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Abstract

With continually increasing data sizes, the relevance of the big n prob-

lem of classical likelihood approaches is greater than ever. The functional

mixed-e↵ects model is a well established class of models for analyzing

functional data. Spatial functional data in a mixed-e↵ects setting is con-

sidered, and so-called operator approximations for doing inference in the

resulting models are presented. These approximations embed observations

in function space, transferring likelihood calculations to the functional

domain. The resulting approximated problems are naturally parallel and

can be solved in linear time. An extremely e�cient GPU implementation

is presented, and the proposed methods are illustrated by conducting a

classical statistical analysis of 2D chromatography data consisting of more

than 140 million spatially correlated observation points.
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1 Introduction

During the last half century, functional data analysis has developed into a well-
established subdiscipline of statistics (Ramsay & Silverman 2005, Ferraty &
Vieu 2006, Horváth & Kokoszka 2012). The continuous sophistication of instru-
ments gives rise to an increasing number of problems where functional aspects
have to be taken into account. Statistical analysis of functional data generally
involves the ill-posed problem of inferring an infinite-dimensional function from
discrete data points. This requires some sort of regularization, and the type
of regularization is often chosen in terms of roughness penalties that lead to
sparse representations of the inferred function in terms of simple basis functions
(Wahba 1990), thus reducing the computational complexity. The most typ-
ical specification, however, considers the inverse regularization process where

1
Code for analyzing spatial functional data on graphics processing units is available as

supplementary material.
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a sparse basis is chosen explicitly for the given problem, which may then be
further regularized through a roughness penalty (Ramsay & Silverman 2005).

This paper takes a di↵erent path for model specification; we consider func-
tional mixed-e↵ects models with random e↵ects generated by Gaussian pro-
cesses, and present a framework that moves the calculations needed in such
analyses from the discrete domain induced by the observations to the underly-
ing functional domain. As a consequence it is possible to e�ciently compute
the functions in question, even if the regularization does not lead to sparse rep-
resentations. The methods are based on the one-dimensional operator approxi-
mations of Markussen (2013), and here new results and resolution strategies are
presented for high-dimensional domains.

The functional viewpoint sheds new light on some of the current challenges
in statistics (Jordan 2011), by both reducing the computational complexity of a
large class of statistical problems dramatically, and at the same time revealing
a natural link between partial di↵erential equations and a large number of sta-
tistical models, including functional mixed-e↵ects models, penalized likelihood,
and Bayesian models.

In addition to reducing the computational complexity, the proposed resolu-
tion strategies are highly parallel, and naturally suited for implementation on
massively parallel processors like graphics processing units (GPUs). While par-
allelization and GPUs have received some attention in the statistical community
in recent years, the main focus has been on parallelizing matrix operations and
sampling techniques (Suchard et al. 2010, da Silva 2010). To our knowledge,
this work marks the first attempt of actively formulating solutions for classical
statistical problems in a way that is particularly beneficial for implementation
on massively parallel hardware.

The proposed methods are illustrated by conducting a classical statistical
analysis of a dataset of 2D chromatograms with more than 140 million spatially
correlated observations on a GPU.

2 Model and estimation

We consider spatial functional data on a domain T ✓ Rd. Suppose we are given
k noisy vectorized functional samples y1, . . . ,yk each consisting of n observa-
tion points. We assume that the observations are generated from the following
functional mixed-e↵ect model

yi(t) = ✓e(i)(t) + xi(t) + "i(t) (1)

where e : {1, . . . , k} ! {1, . . . , p} is a factor, ✓e(i) is the fixed functional mean
for group e(i), xi is a zero-mean Gaussian process with covariance function ⌧2G,
and "i is a Gaussian white noise process with variance �2.

A wide variety of functional mixed-e↵ects models have previously been con-
sidered. One of the dominant approaches is to model functional e↵ects using
smoothing splines (Wahba 1990). Such constructions are considered by Wang
(1998) and Guo (2002). Modeling of mixed e↵ects in terms of penalized splines
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is considered by Chen & Wang (2011), and Lee et al. (2013) propose a related
method based on nested basis functions for spatial mixed-e↵ects models. An
alternative approach to functional mixed-e↵ect models considers the problem
in a nonparametric setting, where no distributional or parametric assumptions
are made on the random e↵ects. Boularan et al. (1994) considered modeling of
growth curves, assuming only that population and individual e↵ects were twice
di↵erentiable, and proposed kernel smoothing estimates for the e↵ects. On a
similar note, Núñez-Antón et al. (1999) considered a nonparametric three-level
model and applied it to speech recognition data. For the use of nonparametric
statistical modeling techniques for functional data we refer to the monograph
by Ferraty & Vieu (2006), and for a review on functional mixed-e↵ects models
we refer to Liu & Guo (2012).

Now, let y be the concatenation of all the vectorized observations of length
N = kn. The discrete observation y generated by function evaluation at the
points t1, . . . , tn in the model (1) may be modeled by a conventional linear
mixed-e↵ects model

y = �✓ + x+ ", (2)

where � = In⌦�0 is the design matrix corresponding to the factor e and ✓ 2 Rnp

is a vector of parameters describing the group mean functions pointwise, x

consists of the spatially correlated e↵ects, x ⇠ N (0, Ik ⌦ ⌧2⌃) with covariance
matrix⌃ =

�
G(ti, tj)

 
i,j
, and " is independent, identically distributed Gaussian

noise " ⇠ N (0,�2IN ). Since the design is constant across all observations, i.e.
given by �0, the fixed e↵ect ✓ can be estimated pointwise. The solution strategy
presented below may also be adapted to the situation with a low rank design
matrix following Markussen (2013).

Functional mixed-e↵ect models are typically modeled with fixed e↵ects of
a functional nature. For simplicity, we parametrize the fixed e↵ect with one
parameter per observation point, mimicking classical mixed-e↵ects models. The
adaption to functional fixed e↵ects given by a limited number of basis functions
can be done following the previously mentioned references. In particular, the
computations needed for fixed e↵ects parametrized in terms of smoothing splines
closely follow the computations related to the spatially correlated e↵ect x, and
the presented methods naturally extend to such parametrizations.

The best linear unbiased prediction for the spatially correlated e↵ects in the
model (2) is done by means of the conditional expectation (Robinson 1991)

E [x |y ] =
�
Ik ⌦ ⌧2⌃

�
V

�1(y � �✓̂), (3)

where V = �2IN + Ik ⌦ ⌧2⌃. The variance parameters are typically estimated
by minimizing the negative log restricted likelihood (Harville 1977, Lee et al.
2006)

`y(�, ⌧) = log detV + log det[�>
V

�1
�] + (y � �✓̂)>V �1(y � �✓̂). (4)
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For later use it is noted that the last term in the likelihood function can be
written as

(y � �✓̂)>V �1(y � �✓̂) =
1

�2
(y � �✓̂)>(y � �✓̂ � E [x |y ])

=
1

�2
(y � �✓̂ � E [x |y ])>(y � �✓̂ � E [x |y ])

+
1

�2
E [x |y ]> (y � �✓̂ � E [x |y ]).

(5)

3 Operator approximations

For many common covariances G the underlying functional structure of the
covariance matrix ⌃ can be exploited, so that one may approximate calculations
involving ⌃. The functional counterpart to ⌃ is the integral operator G given
by

G f =

Z

T
G( · , t)f(t) dt.

To ease notation it is assumed that k = 1. The general case follows easily. Fur-
thermore, assume for simplicity that the observations are equidistantly spaced
within [0, 1]d. For non-equidistant observations, one can introduce a normaliza-
tion operator following Markussen (2013). Let E · : Rn ! C(T ,R) be a linear
embedding of the observation space into the space of piecewise linear functions
on T . For n large, one has the Riemannian sum approximation of the integral

⌃z ⇡ {nG Ez(ti)}i. (6)

Assuming that G is two times continuously di↵erentiable within the d-cubes
spanned by the observation points, the approximation error can be specified ex-
plicitly by applying the trapezoidal rule on the right-hand side integrals, mim-
icking Proposition 1 in Markussen (2013). The error is of order

Pd
i=1 O(n�1

i )
where ni denotes the number of sample points across data dimension i, i.e.
n = n1 · · ·nd.

Denote by L = G �1 the precision operator corresponding to G , i.e.

L G( · , t) = �t (7)

where �t is the Dirac delta function at t. In many cases L is a di↵erential
operator with G as its corresponding Green’s function. For a general intro-
duction to Green’s functions we refer to the monograph by Du↵y (2001). The
relation between covariance functions and di↵erential operators can be used to
approximate calculations involving the covariance matrix ⌃.

First we consider the conditional expectation (3). One may rewrite the
matrix product, to get

E [x |y ] =

✓
In +

�2

⌧2
⌃

�1

◆�1

(y � �✓̂).
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By using the approximation (6) and the fact that inversion is a continuous op-
eration, one can derive (component-wise) operator approximations of the con-
ditional expectation (3)

bE [x |y ] =

✓
I+ �2

n⌧2
L

◆�1

Ey��✓̂, (8)

which means that the conditional expectation can be approximated by applying
an integral operator with smoothing kernel corresponding to the Green’s func-
tion of I + �2

n⌧2 L on the continuously embedded residual y � �✓̂. As opposed
to the original conditional expectation (3) that requires inversion of a possibly
dense covariance matrix, the operator approximation (8) require the inversion
of an operator. This may be done explicitly, and the approximation (8) can
typically be evaluated in linear time, and may in fact often be evaluated at
all observation points in linear time (Markussen 2013). Furthermore, convolv-
ing high-dimensional data with possibly non-isotropic smoothing kernels can be
done very e�ciently on massively parallel processors (Hartung et al. 2012).

By applying the di↵erential operator I+ �2

n⌧2 L on both sides of equation (8)

one gets that f = bE [x |y ] is the solution to the partial di↵erential equation

L f =
n⌧2

�2
(Ey��✓̂ � f). (9)

In general, numerical solution of the di↵erential equation (9) is the most e�cient
choice for obtaining the approximated conditional expectation (8). In particular,
GPUs are very suited for e�ciently solving di↵erential equations based on finite
di↵erence approximations (Micikevicius 2009).

In the following, point evaluation of bE [x |y ] will be assumed to be done at
all data points, giving a vector object directly comparable to E [x |y ]. Point
evaluation is always done after applications of operators, for example di↵eren-
tiation.

Considering the di↵erential equation (9), one can derive a numerically stable
expression for the last part of the expanded quadratic term (5). By inserting
the functional approximations of the conditional expectation in the term and
using (9), one gets that

bE [x |y ]> (Ey��✓̂ � bE [x |y ]) =
�2

n⌧2
bE [x |y ]> L bE [x |y ] .

Assuming that the covariance function G is positive definite, a square root K
of L exists, such that L = K †K , which means that the last term may also
be written as a sum of squares

�2

n⌧2
(K bE [x |y ])>(K bE [x |y ]).

Finally, to approximate the determinant terms in the restricted likelihood
function (4), one notes that

d

d↵
log det

⇥
In + ↵⌃

⇤
= tr

�
(In + ↵⌃)�1

⌃

�
,
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which means that

log det[In +⌃] =

Z 1

0

nX

`=1

e

>
` (I+ ↵⌃)�1

⌃e` d↵,

where the vectors e` constitute an orthonormal basis for Rn. By approximating
the matrix computations with their operator counterparts, one gets that

log det[�2In + ⌧2⌃] ⇡
Z 1

0

Z

T

⇣
↵I+ �2

n⌧2 L
⌘�1

�t(t) dt d↵+ n log �2.

The integral term integrates over a family of Green’s functions, and for many
common covariance functions G, the integral may be explicitly computed, re-
sulting in constant time computation of the approximated log-determinant.

The explicit link between the covariance G and the di↵erential operator L
can be convenient in model specification. For some models, it may be natural
to start out assuming that the random e↵ect has a specific covariance function,
and for others it may be straightforward to specify the di↵erential operator.

Many well-known covariance functions G correspond to simple di↵erential
operators L with suitable boundary conditions. This will be illustrated in the
following examples.

Example 3.1. Let T = [0, 1]d and L = @2
t1 · · · @

2
td . For homogeneous Dirichlet

boundary conditions the corresponding Green’s function is

G(t, t0) = (t1 ^ t01 � t1t
0
1) · · · (td ^ t0d � tdt

0
d),

which is the covariance of the tied-down Brownian bridge on T . Alternatively,
assuming homogeneous Dirichlet boundaries along the 0-boundaries, and cor-
responding Neumann boundaries along the 1-boundaries results in the Green’s
function

G(t, t0) = (t1 ^ t01) · · · (td ^ t0d),

which is the covariance of the Brownian sheet.
Other boundary conditions leads to e.g. the Brownian bridge on T . Fi-

nally, assuming homogeneous Neumann boundary conditions may often be a
good choice from a modeling point of view, as this corresponds to a Brow-
nian process with a free level. Even though this will only make L and the
corresponding covariance G positive semi-definite, all calculations can be done
completely analogous to the cases where L is positive definite. �
Example 3.2. Let T = [0, 1]d and L = (��)`+" where� denotes the Laplace
operator, ✏ > 0, and ` � 2. Under suitable boundary conditions and with " = 0,
this class of precision operators corresponds to penalizing the squares of deriva-
tives (Wahba & Wendelberger 1980), which is commonly used for regularization.

For homogeneous Dirichlet boundary conditions one gets the covariance

G(t, t0) =
1X

i1,...,id=1

2d

⇡2`(i21 + · · ·+ i2d)
` + "

dY

j=1

sin(ij⇡tj) sin(ij⇡t
0
j). (10)
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For Neumann boundaries the covariance function is similar, only with the sine
functions substituted by cosines. When " = 0, the covariance function is no
longer positive, but the above expression is well defined, and so in practice one
may choose " = 0.

For some choices of d and ` more compact descriptions are available (Du↵y
2001, chap. 5). Finally it is worth noting that these Green’s functions may take
the value +1 on the diagonal, corresponding to infinite variance. This happens
for example when d = 2 and ` = 1. �

Example 3.3. Let T = Rd and L = (2��)↵/2 with free boundary conditons.
Assume that ↵ = ⌫ + d/2,  > 0, and ⌫ > 0. This choice of precision L has the
Matérn covariance function (Lindgren et al. 2011) as its Green’s function

G(t, t0) = kt� t

0kv

2⌫�1�(⌫ + d/2)(4⇡)d/2v
Kv(kt� t

0k).

�

Example 3.4. Suppose that x from (2) is a tied-down Brownian sheet on [0, 1]2,
i.e.

G((t1, t2), (t01, t02)) = (t1 ^ t01 � t1t
0
1)(t2 ^ t02 � t2t

0
2).

The Green’s function G↵((t1, t2), (t01, t
0
2)) for the di↵erential operator L + ↵I is

given by

1X

i=1

2 sinh(
p
↵

i⇡ (1� t2 _ t02)) sinh(
p
↵

i⇡ (t2 ^ t02))

i⇡
p
↵ sinh(

p
↵

i⇡ )
sin(i⇡t1) sin(i⇡t

0
1).

With this expression one can explicitly compute (8). Furthermore, one can
derive the following log-determinant approximation

log det[�2In + ⌧2⌃] ⇡ n log �2 +
1X

i=1

log

✓
i⇡�p
n⌧

sinh

✓
⌧
p
n

i⇡�

◆◆
(11)

which can be evaluated by cutting the sum o↵ at some su�ciently high value
of i. This provides an interesting generalization to the known log-determinant
approximation for the Brownian bridge under Gaussian noise (Markussen 2013)
which is

n log �2 + log

✓
�p
n⌧

sinh

✓
⌧
p
n

�

◆◆
.

Finally, due to the symmetry of the eigenfunctions of L under Dirichlet and
Neumann boundary conditions, the approximation (11) is identical to the ex-
pression one would get with Neumann boundary conditions. �

Example 3.5. Assume that L = (��)` + " and T = [0, 1]2 with homo-
geneous Dirichlet or Neumann boundary conditions. Using (10) the following
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log-determinant approximation is easily derived

log det[�2In + ⌧2⌃] ⇡ n log �2 +
1X

i=1

1X

j=1

log

✓
1 +

⌧2n

�2

1

⇡2`(i2 + j2)` + "

◆
.

(12)

�

Example 3.6. To compare the computation time of the conditional expectation
(3) with the approximation given by the solution of the di↵erential equation (9),
the two solutions were calculated for m ⇥ m images. The matrix solution (3)
was calculated by e�ciently inverting the matrix V in BLAS using the Cholesky
decomposition and a single thread on a 3.4 GHz Intel Core i7. The di↵erential
equation (9) was solved using the explicit di↵usion scheme described in detail
in Appendix A. The scheme was implemented in CUDA C and executed on an
NVIDIA GeForce GTX 680MX GPU with 1536 CUDA cores. The runtime re-
sults, excluding the construction time for the matrix V for the matrix approach,
can be seen in Figure 1. We note that for m = 50, the runtime of the matrix
computation is a factor 1200 slower than the solution of the di↵erential equa-
tion. For the given observation sizes, we note that the GPU runtimes only di↵er
slightly, with an average runtime increase of approximately 10% from m = 10 to
m = 50 despite of the factor 25 increase in observation size. This is caused by
the GPU not being fully utilized for data sizes in the given range, and the run-
time is dominated by memory bandwidth. The runtime increase from m = 10
to m = 1000 of the GPU implementation was found to be merely a factor of 33.
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Figure 1: Runtime for the prediction of the conditional expectation using re-
spectively the matrix formulation (3) and the di↵erential equation (9) based on
100 replications for m = 10, 20, 30, 40, 50.

�

8



0.0e+00

5.0e-06

1.0e-05

1.5e-05

10 20 30 40 50
m

M
ea
n
sq
u
ar
e
ap

p
ro
xi
m
at
io
n
er
ro
r

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50
m

R
el
at
iv
e
lo
g-
d
et
er
m
in
an

t
ap

p
ro
xi
m
at
io
n
er
ro
r

Figure 2: Mean square error of the approximated conditional expectation (8)
computed by solving (9), based on 100 replications per m (left) and relative
approximation error of the log-determinant (right).

Example 3.7. To assess the quality of the approximations, observations of tied-
down Brownian sheets on [0, 1]2 with added Gaussian noise have been generated.
The observation points are on an equidistant m⇥m grid, for varying values of
m. The parameters in terms of the model (2) were � = 0, �2 = 0.1, and ⌧2 = 1.

Figure 2 shows the mean square error of the approximated conditional ex-
pectation (8) with respect to the original conditional expectation (3), and the
relative error of the log-determinant approximation (11). The approximated
conditional expectation was computed by solving the di↵erential equation (9)
using the same setup as described in the previous example. The log-determinant
approximation was computed using the formula (11) where n was replaced by
n + 1 in the second term to correct for the Dirichlet boundary conditions, and
the sum was cut o↵ after 10,000 terms.

Both approximations clearly improve as m increases. In particular, it is
worth noting that the relative error of the log-determinant approximation seems
to converge faster than O(m�1). �

3.1 Related models

The model (2) is closely related to other types of models. In particular, assuming
that k = 1 and � = 0, one arrives at the classical functional data model (Ramsay
& Silverman 2005)

y = x+ ". (13)

which is typically written in functional form as

y(t) = x(t) + "(t).
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One can think of the model (13) as a Bayesian model with x as the prior of
the observed function. In this model, the conditional expectation corresponds
to the Bayes estimator of the function. Alternatively one can see the conditional
expectation as the minimizer of the penalized likelihood function

`y(x) = (y � x(ti)i)
>(y � x(ti)i) + �

Z

T
x(t)L x(t) dt, (14)

where the � parameter corresponds to �2
/⌧2 in the mixed-e↵ects and Bayesian

model, and x(ti)i is the column vector consisting of the function x evaluated
at the points t1, . . . , tn. In these cases one would typically estimate parameters
by means of marginalized likelihood methods or the generalized cross validation
criterion (Craven & Wahba 1978)

GCV(�) =
n

(n� df(�))2
(y � x̂�)

>(y � x̂�),

where x̂� is the conditional expectation (3), with � = �2
/⌧2, and df(�) is the

trace of the matrix 1
2�⌃(I + 1

2�⌃)�1. Similarly to the calculations for the log-
determinant, one can approximate

df(�) ⇡
Z

T
G⇤
�(t, t) dt,

where G⇤
� is the Green’s function corresponding to the di↵erential operator

2�
n L + I, and thus carry out the generalized cross validation using operator
approximations. If a marginalized likelihood approach is preferred, the likeli-
hood can be approximated using the already presented approximations.

In addition to the connection between the mentioned statistical models, the
di↵erential equation (9) naturally links mathematical models governed by this
type of equation to the models described here. This in turn allows the use of
the mentioned criteria to estimate parameters in such mathematical models.

3.2 Related work

It was noticed by Dolph &Woodbury (1952) that covariance functions of stochas-
tic processes and Green’s functions were related through stochastic di↵erential
equations. The solution x to the stochastic partial di↵erential equation

Lx(t) = w(t), (15)

wherew is Gaussian white noise and L is positive definite, is a Gaussian random
field with covariance G—the Green’s function of L . In a somewhat similar
fashion to what has been described in the present paper, Dolph & Woodbury
(1952) used this representation to pose prediction problems for continuously
observed curves as solutions to di↵erential equations.

More recently, Lindgren et al. (2011) used the connection (15) with L =
(2 ��)↵/2 as the definition of the class of MatÈrn fields, and derived a com-
putationally e�cient Markov representation of the solution. In contrast this
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paper poses the prediction of the corresponding stochastic di↵erential equation
as a partial di↵erential equation in the functional domain, and does not use any
explicit representation of the data. Because of this relation to the stochastic dif-
ferential equation formulation, the presented method can also be generalized to
domains that are smooth manifolds, by simply changing the domain of (9), com-
pletely analogous to the manifold generalization by Lindgren et al. (2011). In
addition, the presented method can handle a large class of covariance functions
since the presented methods only need to identify the corresponding di↵erential
operator and solve a partial di↵erential equation.

4 Example: Glyphosate data

Figure 3: Example of a chromatogram along with absorbance curves for three
fixed wavelengths (corresponding to the dashed red lines) on log-scale.

Consider a dataset consisting of k = 28 chromatograms (yi)1i28, each of
which consists of n = 209⇥24, 000 (wavelength ⇥ retention time) observations of
absorbance (A.U.). The chromatograms have been generated using ultra-high-
performing liquid chromatography with diode-array-detection (Petersen et al.
2011). The subjects of the analysis are rapeseed seedlings having been exposed
to di↵erent levels of glyphosate, commonly known as Roundup R�.

The original data have been preprocessed prior to the analysis. The chro-
matograms have been registered in retention time using a so-called TV-L1

warping algorithm (Zach et al. 2007, Rakêt et al. 2011). First, the observa-
tions of each glyphosate-level group have been iteratively registered toward the
group mean. Next, warping functions of all group means toward the maximum-
glyphosate-level group mean are computed. Finally, these warps are applied to
the intra-group registered observations, such that all samples follow a similar
coordinate system. For the algorithmic details we refer to Rakêt (2013). Fur-
thermore, the data does not have homogeneous variance; in flat regions, little
or no noise is present while noise around peaks is stronger. To alleviate this
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problem Gaussian noise with variance 2 · 10�4 has been added to the logarithm
of the registered absorbances. Figure 3 displays one of the preprocessed chro-
matograms, and from the scale of the log absorbance it is clear that the added
noise is minuscule compared to the signal.

The logarithm of the absorbance is modeled according to (2)

log(yi + 1) = ✓e(i) + xi + "i (16)

where the factor e : {1, . . . , 28} ! {0, 1, 5, 10, 20, 30, 50} with p = 7 levels
gives the glyphosate exposure (in µM), and each ✓ is 209⇥24, 000 dimensional.
The xis are independent 209 ⇥ 24, 000 dimensional free Brownian sheets (i.e.
n = 5, 016, 000, N = 140, 448, 000 and L = @2

s@
2
t with Neumann boundary

conditions) with variance parameter ⌧2 = �2⇠2, and the "is are independent,
identically distributed Gaussian noise "i ⇠ N (0,�2In). Brownian sheets have
folds parallel to the axes, which also carry over to the associated posteriors (see
e.g. Figure 10). This behavior makes the Brownian sheet a natural model for
the present data, where responses at individual retention times are expected
to extend along wavelengths. Furthermore, a multiplicative di↵erence between
chromatograms can be expected for this data. This gives a constant level shift
after the log transformation. The Neumann boundary conditions (corresponding
to a free level, see Example 3.1) are then natural for the problem, since the level
shift may be captured in the prediction of the spatially correlated e↵ects.

To approximate the restricted likelihood function (4) it is first noted that
the determinant terms can be simplified

detV = �2N det[I+ ⇠2⌃]k, det[�>V �1
�] = ��2np

✓
k

p

◆np

det[I+ ⇠2⌃]�p,

both of which are approximated using the operator approximation (11). In the
given parametrization, a closed form restricted maximum likelihood estimate
for �2 can be derived

�̂2 =
1

N � np

⇣
(y � �✓̂ � bE [x |y ])>(y � �✓̂ � bE [x |y ])

+
1

c⇠2
(K bE [x |y ])>(K bE [x |y ])

⌘
.

The conditional expectation is computed as the solution to the di↵erential equa-
tion (9), which is solved numerically using a finite di↵erence approximation with
a stabilized explicit di↵usion scheme on a GPU. We refer to Appendix A for the
details.

The fixed e↵ects ✓0,✓1,✓5,✓10,✓20,✓30,✓50 are estimated pointwise, and the
contrasts to baseline ✓0 can be found in Figure 4. Examples of the predicted
spatially correlated e↵ect can be found in Figure 5. We note that the range of
the log absorbance values in the predicted spatially correlated e↵ect is around
one fifth of the range for the estimated fixed e↵ect contrasts. The estimates of
the variance parameters are 91.96 and 1.363 · 10�2 respectively for ⇠ and �.

12



Figure 6 displays a QQ plot of the conditional residual quantiles against
normal quantiles and a scatter plot of conditional residuals against the estimated
fixed e↵ects. While the QQ plot shows non-normal tail behavior, this is caused
by approximately 0.2% of the observations, and their e↵ect on the estimate of �
is small. The residual plot shows an unnaturally large variation of the residuals
corresponding to low absorbance, and for log absorbance levels of around 12.2.
Nevertheless, these e↵ects are again caused by very few observations, and the
vast majority of the observations, that lie between log absorbance levels of 11.5
and 12, behave as one would expect.

Figure 7 shows the di↵erence in log-likelihood evaluated at the maximum
likelihood estimates between the original model (16) and the six models corre-
sponding to collapsing the zero-exposure group with each of the other exposure
level groups. The likelihood has been used instead of the restricted likelihood
in order to invoke Wilk’s likelihood ratio statistic (Pawitan 2001). Classical
asymptotical behavior would prescribe twice the di↵erence in log-likelihood to
be approximately �2-distributed with degrees of freedom equal to n. In this
example the test statistics of order 17 · 106 thus could be evaluated at approxi-
mately 5 · 106 degrees of freedom. However, since the validity of a �2-test with
this many degrees of freedom is questionable, we have not computed p-values.
However, there seems to be no doubt concerning the significant di↵erence be-
tween the exposure groups. Apart from the 1µM exposure group, that has a
somewhat irregular fixed e↵ect (Figure 4), the log-likelihood di↵erences behave
as one would expect; di↵erences increase with glyphosate level. The irregularity
of the 1µM group is mainly caused by one observation with very strong peaks.
The prediction of the corresponding spatially correlated e↵ect can be seen in
Figure 5 (top left).

5 Example: Simulated data

In this simulation example, k = 25 images on T = [0, 1]2 sampled at 200⇥ 200
equidistant points have been generated from the model

yi = f↵(tj)j + g�i,�i(tj)j + "i, (17)

where the functions f and g at a point t = (t1, t2) are given as

f↵(t1, t2) = sin(2↵t1)� sin(↵t1t2) cos(5t2) + t2,

g�,�(t1, t2) = g?�,�(t1, t2)� E[g?�,�(t1, t2)],

with

g?�,�(t1, t2) =
1

2
(sin(�t1t2) cos(�t1)t

2
2 � cos(��t2)).

Here ↵ 2 {1, . . . , 10} is a fixed integer, �i ⇠ N (1, 4), �i ⇠ N (1, 9), "i ⇠
N (0,�2In) with n = 40, 000 and variance �2 = 0.1, and all random variables
are independent across the di↵erent samples. Images of the functions f↵ and
g�,� with di↵erent parameters can be found in figures 8 and 9.
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−2 −1 0 1

Figure 4: Di↵erences between the estimated fixed e↵ects ✓̂1, ✓̂5, ✓̂10, ✓̂20, ✓̂30, ✓̂50

and baseline ✓̂0 (from top to bottom).
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−0.4 −0.2 0.0 0.2 0.4

Figure 5: Predictions of the spatially correlated e↵ects xi for the four observa-
tions with glyphosate exposure level 1µM .

Figure 6: QQ plot and residual plot of a random sample consisting of 0.1% of
the conditional glyphosate data residuals (1,404,480 data points), with the 38
most severe outliers removed from the residual plot. The line in the QQ plot
shows the estimated standard deviation. For the residual plot the conditional
residuals are plotted against the fitted values ✓̂e(i), and the point density is
indicated in blue.
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Figure 7: Log-likelihood di↵erences between the model with the marked ex-
posure level and zero-exposure level combined and the full model (16). The
likelihood functions have been evaluated at the maximum likelihood estimates.
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Figure 8: The function f↵ for di↵erent values of ↵.

The spatially correlated part of the model is simulated from a parametric
random e↵ect model with two degrees of freedom, and it is investigated how
the developed model performs under misspecification. This is relevant since
one would expect the functional model to be misspecified in most real data
applications.

The parametrization and calculations from the previous example trivially
carries over to this example. Figures 10 and 11 show examples of the conditional
expectation under the assumption of a free Brownian sheet e↵ect and of an e↵ect
with biharmonic precision L = ��. For the presented figures ↵ = 6 was used
and the spatially correlated e↵ects shown correspond to those of Figure 9. In
this setting the smoother predictions from the biharmonic precision consistently
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� = 1.77 � = 1.45 � = 3.73 � = 1.23 � = 3.82
� = 2.17 � = 2.61 � = 3.19 � = 2.84 � = 4.60

−1.0

−0.5

0.0

0.5

1.0

Figure 9: The function g�,� with � and � values simulated following � ⇠ N (1, 4),
� ⇠ N (1, 9).

MSE
7.34 · 10�3

MSE
7.35 · 10�3
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Figure 10: Predictions of the spatially correlated e↵ects from Figure 9 in the
model (17) with ↵ = 6 under the assumption of a free Brownian sheet e↵ect,
with ⇠̂ = 0.115, along with mean squared errors (MSEs).
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MSE
1.57 · 10�3
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Figure 11: Predictions of the spatially correlated e↵ects from Figure 9 in the
model (17) with ↵ = 6 under the assumption of a precision operator L = ��,
with ⇠̂ = 0.0535, along with mean squared errors (MSEs).

Figure 12: QQ plot of the conditional residuals from the model with a Brownian
(left) and biharmonic (right) spatially correlated e↵ect (1,000,000 data points).
The lines show the true standard deviation.
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Figure 13: Histograms of parameter estimates in the model (17) under assump-
tion of Brownian and biharmonic correlated e↵ects. The dashed red line in the
right histogram shows the true standard deviation.

lead to better predictions of the spatially correlated e↵ects. QQ plots of the
conditional residuals can be found in Figure 12. While both plots look very
reasonable, it can be seen that the biharmonic model gives a better variance
estimate. This is caused by the inherent roughness of the Brownian sheet prior,
that will capture some of the noise in the prediction of the spatially correlated
e↵ects.

To quantify the behaviour of the variance parameter estimators 100 inde-
pendent replications (10 for each value of ↵) of data from the model (17) have
been generated. Figure 13 shows a histogram of �̂2 under the assumption of a
Brownian and biharmonic correlated e↵ect, respectively. The previously men-
tioned property that the Brownian sheet e↵ect results in underestimation of
the true standard deviation (0.3162) is clearly visible. It is also seen that the
biharmonic e↵ect underestimates the standard deviation, although to a much
smaller extent.

6 Discussion

This work presents a new method for conducting classical statistical analyses
of functional data. By avoiding a direct representation of the data, and do-
ing calculations in the functional domain, the computational complexities of
the likelihood function and the predictions of spatially correlated e↵ects are
significantly reduced. In addition to reducing the computational complexity,
the problem of predicting spatially correlated e↵ects may be posed as a partial
di↵erential equation. Solvers for such partial di↵erential equations are easily
implemented on massively parallel processors, which drastically decrease com-
putation times. CUDA C and R (R Core Team 2012) code for conducting the
presented analyses on NVIDIA graphics hardware is available as supplementary
material.

The presented methods allow for analyzing data that are orders of magni-
tude larger than what has previously been feasible. Using a massively parallel
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implementation, it was demonstrated that statistical analysis of a dataset of 2D
chromatograms, consisting of more than 140 million spatially correlated obser-
vations, can be done in a matter of minutes.

The considered model was kept simple to illustrate the computational meth-
ods, but a number of generalizations can be made. Extensions to vector valued
data and more complex designs, including functional fixed e↵ects, are straight-
forward, and the approximations may be useful in e.g. hierarchical functional
models (Staicu et al. 2010). Furthermore, the results are also easily adapted to
the case of the domain T being more complex than what was considered here,
e.g. a smooth manifold. Further generalizations that are relevant from the
perspective of achieving valid statistical models, but also require new method-
ological work, is to allow for variance heterogeneity (Pintore et al. 2006, Yue,
Speckman & Sun 2012, Yue, Simpson, Lindgren & Rue 2012) and to incorporate
data registration directly in the mixed-e↵ects model.
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Horváth, L. & Kokoszka, P. (2012), Inference for functional data with applica-
tions, Vol. 200, Springer.

Jordan, M. I. (2011), ‘Message from the President: What are the open problems
in Bayesian statistics?’, ISBA Bulletin 18, 1–4.

Lee, D.-J., Durbán, M. & Eilers, P. (2013), ‘E�cient two-dimensional smooth-
ing with P -spline ANOVA mixed models and nested bases’, Computational
Statistics & Data Analysis 61, 22 – 37.

Lee, Y., Nelder, J. A. & Pawitan, Y. (2006), Generalized Linear Models With
Random E↵ects: Unified Analysis Via H-Likelihood, Chapman & Hall.

Lindgren, F., Rue, H. & Lindström, J. (2011), ‘An explicit link between Gaus-
sian fields and Gaussian Markov random fields: the stochastic partial di↵er-
ential equation approach’, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 73(4), 423–498.

Liu, Z. & Guo, W. (2012), ‘Functional mixed e↵ects models’, Wiley Interdisci-
plinary Reviews: Computational Statistics 4(6), 527–534.

Markussen, B. (2013), ‘Functional data analysis in an operator-based mixed-
model framework’, Bernoulli 19, 1–17.

Micikevicius, P. (2009), 3D finite di↵erence computation on GPUs using CUDA,
in ‘Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units’, ACM, pp. 79–84.
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tern Recognition’, Vol. 4713 of Lecture Notes in Computer Science, Springer,
pp. 214–223.

A Solving the fourth order PDEs

Consider the di↵erential equation (9) with L = @2
t1@

2
t2 (the case L = �� is

treated similarly), i.e.

(@2
t1@

2
t2 + c)f = g. (18)

This equation is solved using an explicit di↵usion scheme, with an added ar-
tificial time variable. The solution to (18) is found as the steady state of the
corresponding di↵usion equation.

In order to get numerically stable solutions, @2
t1@

2
t2 is approximated using a

5⇥5 stencil, and furthermore the di↵usion is stabilized by evaluating the center
point of the stencil at the future time point (Weickert & Schnörr 2001). This
scheme is stable for time steps of 0.125, but the convergence rate is greatly accel-
erated by using the so-called fast explicit di↵usion (FED) method of Grewenig
et al. (2010), which cleverly mixes stable and unstable time steps. In the fol-
lowing example the procedure is demonstrated for a one-dimensional example.

Example A.1. To illustrate the solution procedure, consider the one-dimensional
version of the di↵erential equation (18), i.e. the di↵erential equation (9) with
L = �@2

t . We approximate L by a standard five-point stencil, so assuming
equidistant observations we get

L f(t)|t=ti ⇡
f(ti�2)� 16f(ti�1) + 30f(ti)� 16f(ti+1) + f(ti+2)

12(ti � ti�1)2

The one-dimensional version of the di↵erential equation (18) is given by

(�@2
t + c)f = g. (19)

Instead of considering this equation directly, we introduce an artificial time
variable ⌧ and consider the di↵usion equation

@⌧f(t, ⌧) = g(t)� (�@2
t + c)f(t, ⌧), (20)

where f(t, 0) is initialized using the observed data values. The steady state of
the di↵erential equation (20) in ⌧ , e.g. when @⌧f(t, ⌧) = 0 will solve the original
di↵erential equation (19). We discretize

@⌧f(t, ⌧)|⌧=⌧j ⇡ f(t, ⌧j+1)� f(t, ⌧j)

⌧j+1 � ⌧j
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and L f(ti, ⌧)|t=ti,⌧=⌧j is approximated by

f(ti�2, ⌧j)� 16f(ti�1, ⌧j) + 30f(ti, ⌧j+1)� 16f(ti+1, ⌧j) + f(ti+2, ⌧j)

12(ti � ti�1)2
,

where the future time point ⌧j+1 is used in the term f(ti, ⌧j+1) for stability.
The equation (20) is now solved iteratively by considering its finite di↵erence
representation, and taking time steps of size ⌧j+1 � ⌧j , where at each step we
solve for f(ti, ⌧j+1). �

For the glyphosate data from Section 4, the di↵usion is assumed to have
reached its steady state once the artificial time reaches 5,000, corresponding to
40,000 iterations using a step size of 0.125, or a mere 346 FED steps.

The presented solver has been implemented in CUDA C, in order to utilize
the thousands of cores on modern GPUs. The runtime (including writing to
GPU memory) for computing the solution to (18) for a single 209 ⇥ 24, 000
chromatogram is on average 2.0 seconds on an NVIDIA GeForce GTX 680MX.
The resulting average computation time for the restricted likelihood function
(4) is 69 seconds on the full glyphosate dataset presented in Section 4.
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