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Abstract

We consider the popular TV-L1 optical flow formulation, and the so-called dual-
ity based algorithm for minimizing the TV-L1 energy. The original formulation
is extended to allow for vector valued images, and minimization results are
given. In addition we consider di↵erent definitions of total variation regulariza-
tion, and related formulations of the optical flow problem that may be used with
a duality based algorithm. We present a highly optimized algorithmic setup to
estimate optical flows, and give five novel applications. The first application
is registration of medical images, where X-ray images of di↵erent hands, taken
using di↵erent imaging devices are registered using a TV-L1 optical flow algo-
rithm. We propose to regularize the input images, using sparsity enhancing
regularization of the image gradient to improve registration results. The second
application is registration of 2D chromatograms, where registration only have
to be done in one of the two dimensions, resulting in a vector valued registration
problem with values having several hundred dimensions. We propose a novel
method for solving this problem, where instead of a vector valued data term, the
di↵erent channels are coupled through the regularization. This results in a sim-
ple formulation of the problem, that may be solved much more e�ciently than
the conventional coupling. In the third application of the TV-L1 optical flow
algorithm we consider the problem of interpolating frames in an image sequence.
We propose to move the motion estimation from the surrounding frames directly
to the unknown frame by parametrizing the optical flow objective function such
that the interpolation assumption is directly modeled. This reparametrization
is a powerful trick that results in a number of appealing properties, in particular
the motion estimation becomes more robust to noise and large displacements,
and the computational workload is more than halved compared to usual bidi-
rectional methods. Finally we consider two applications of frame interpolation
for distributed video coding. The first of these considers the use of depth data
to improve interpolation, and the second considers using the information from
partially decoded video frames to improve interpolation accuracy in high-motion
video sequences.



Notes

This thesis was awarded the University of Copenhagen silver medal at the 2013
annual commemoration. A number of typos present in the original thesis has
been corrected in the present version, and several references have been updated.

Lars Lau Raket
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Chapter 1

Introduction

This thesis is an answer to the call for prize papers announced at University of
Copenhagen’s annual commemoration 2011. In particular, it is an answer to the
topic “Regularized energy methods in image analysis”, proposed by Department
of Computer Science.

For the energy method in question, we consider the TV-L1 optical flow
formulation, which has received a lot of attention in recent years. With the
introduction of the so-called duality based method for minimizing this energy,
Zach et al. (2007) opened the door to an entirely new way of estimating optical
flow, that has fundamentally changed the field.

While the method introduced by Zach et al. (2007) is powerful, the original
formulation is somewhat limiting. We begin this thesis with a theoretical section,
where we first review the original formulation. We then consider extensions to
allow for vector valued images, which will make it possible to estimate optical
flows using color images. This extension was originally presented in Rakêt et al.
(2011). We furthermore consider alternative definitions of the total variation
term that is used for regularizing the results. A number of related formulations
of the optical flow problem that fit into the duality based algorithm are reviewed,
and in relation to this, we propose new data and regularization terms, and give
directions on the minimization of the the corresponding energies.

We finally end the theoretical chapter by presenting a highly optimized algo-
rithmic setup to estimate optical flows, and give results for some of the presented
algorithms on benchmark data from the Middlebury Optical Flow Database
(Baker et al. 2011).

The second part of this thesis consists of five novel applications of optical
flow. The first application is registration of medical images, where X-ray images
of di↵erent hands, taken using di↵erent imaging devices are registered using
a TV-L1 optical flow algorithm. In addition we consider the use of sparsity
enhancing regularization of the input images, in order to improve registration
results.

The second application considers registration of 2D chromatograms. For this
particular dataset, registration is only necessary in one of the two dimensions of
the data. With a fixed second dimension we may consider this as a vector valued
registration problem with values having several hundred dimensions. A novel
method for solving this is proposed, where instead of a coupling the di↵erent
channels through the data term, the coupling is done through regularization.

1



This results in a very simple formulation of the problem, which may in addition
be solved much more e�ciently than the conventional coupling. This method,
which may be used on many types of data, has originally been developed for
the presented example in Rakêt & Markussen (2014), where the registration is
used as a preprocessing step, prior to analysis of the dataset.

In the third application of the TV-L1 optical flow algorithm we consider the
problem of interpolating unknown frames in an image sequence. We propose
to move the motion estimation from the surrounding frames directly to the
unknown frame, by parametrizing the optical flow objective function such that
the interpolation assumption is directly modeled. This reparametrization is a
powerful trick that results in a number of appealing properties, in particular the
motion estimation becomes more robust to noise and large displacements, and
the computational workload is more than halved compared to usual bidirectional
methods. This method was originally presented in Rakêt et al. (2012a).

Finally we consider two applications of frame interpolation meant to be used
in distributed video coding setups. The first of these consider the use of depth
data to improve interpolation quality. We show that including a standard asym-
metric data term for the depth data with the symmetric data term presented
in the previous application gives significantly better interpolation results than
using either of the terms on their own. This application has been developed
for the distributed video codec by Salmistraro, Rakêt, Zamarin, Ukhanova &
Forchhammer (2013).

For the second application of interpolation in a distributed video coding
setup, we consider using the information from partially decoded video frames
to improve accuracy in high-motion video sequences. We develop a method to
generate rough estimates of the frame to be decoded in pixel domain based on
the decoded information in transform domain. With these initial estimates we
are able to use a TV-L1 optical flow method to fill in the fine details from the
two known surrounding key frames. This method is used in the distributed video
codec described in Luong et al. (2013), and have resulted in a significant bitrate
saving, compared to the current state-of-the-art codec SING (Luong et al. 2012).

All results of this thesis are, unless otherwise mentioned, original and un-
published, and have been independently developed by the author.
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Chapter 2

Optical Flow

The optical flow problem dates back to the works of Lucas & Kanade (1981) and
Horn & Schunck (1981), that respectively proposed local and global resolution
strategies. Given two images I0 and I1 the main problem in optical flow is
defining a map v, such that the di↵erence between I1 warped according to v

and I0

I1(x+ v(x))� I0(x) (2.1)

is close to zero. Solving (2.1) equal to zero is problematic in a number of ways.
It is ill-posed; in the standard case we have one-dimensional brightness images,
and for each point x we need to estimate the two components of v from a
single equation. In addition the problem is highly non-linear. To deal with
these problems the term (2.1) is typically linearized by means of its first order
Taylor approximation in v. Local methods assume that the displacement v(x) is
similar in a neighborhood of x, which typically gives enough linear independent
equations in the channels of v for proper estimation. In contrast global optical
flow methods typically use a pointwise data term based on the linearization of
(2.1), but adds a regularization term, that penalizes erratic behavior of v, giving
an energy that must be minimized in order to estimate v.

In the original formulation by Horn & Schunck (1981), optical flow is defined
as “the distribution of apparent velocities of movement of brightness patterns
in an image”, which is directly compatible with (2.1) with grayscale images.
Rather than this original definition, optical flow is today often thought of as the
projected scene flow (Barron et al. 1994), that is the true motion of the objects
in the scene as seen from the image plane.

Today the variational global approach to optical flow estimation is by far the
method of choice for high accuracy optical flow algorithms, and judging from
the authoritative Middlebury optical flow benchmark (Baker et al. 2011) the op-
tical flow problem is essentially solved. The accuracy of optical flow algorithms
have only increased marginally since 2010, where Xu et al. (2010) presented
their estimation framework (Xu et al. 2012), with average endpoint errors of
the estimated motion vectors that are typically less than one fifth of a pixel.
So why still consider this problem, if one can only hope for pushing accuracy
on the second or third decimals of benchmark data? A number of prominent
reasons comes to mind. First, many of the top performing methods require
large amounts of time (up to 10 hours) to compute a single displacement field
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for small resolution images. Secondly, it seems that almost all top performing
methods are either very complex in their formulation, or relies on solving the
optical flow problem using highly sophisticated setups. In addition many meth-
ods rely on ‘tricks’ (Sun et al. 2010), and proper tuning of a large number of
parameters. Finally, it seems that most focus has been on a single benchmark
dataset, which means that many methods are essentially tailored to the specific
evaluation setup. The consequence of this is that only little of the work that
has been put in to solving the optical flow problem given by the Middlebury
benchmark, has actually been transferred to possibly benefit related problems
such as processing of video data or registration of medical images.

In this chapter we will review the so-called duality based optical flow method
with a special focus on the TV-L1 optical flow formulation, which is both fast
and has been used in many di↵erent applications, demonstrating its robustness.

2.1 Duality based optical flow

Given a domain T ✓ Rd and a sequence of images It : T ! Rk, I = (It)t2T

for suitable T , we want to estimate the optical flow v : T ! T such that
the motion matches the image sequence with respect to some measure. We will
consider a variational approach where the flow v is estimated as a minimizer of
an energy on the form

E(v) = �F (I, v) +G(v) (2.2)

with F being a positive functional measuring data fidelity, and where G acts as a
regularization term. Many energies of this type have been suggested throughout
the years, and a large variety of solution methods exist (Horn & Schunck 1981,
Papenberg et al. 2006, Zach et al. 2007, Zimmer et al. 2011). Here we will focus
on a specific relaxation of the problem, and consider the minimization methods
in this framework. The relaxed energy is obtained by introducing an auxiliary
variable, e↵ectively splitting the minimization problem in two quadratically cou-
pled problems

E(u, v) = �F (I, v) +
1

2✓

Z
kv(x)� u(x)k2 dx+G(u). (2.3)

For ✓ ! 0 a minimizer of (2.2) and (2.3) will clearly be the same, so the hope
is that for ✓ small, a minimizer of the relaxed energy (2.3) will be close to a
minimizer of the original energy (2.2). It may seem troublesome to introduce
an auxiliary variable, since one has to iteratively solve the two energies

E1(v) = �F (I, v) +
1

2✓

Z
kv(x)� u(x)k2 dx, (2.4)

E2(u) =
1

2✓

Z
kv(x)� u(x)k2 dx+R(u), (2.5)

and for a wide variety of choices for F and G, methods exist that directly tar-
get (relaxed) variants of the original energy (2.2). The splitting on the other
hand also has a number of advantages, typically the two sub-problems (2.4) and
(2.5) are much easier to solve, and in a number of important cases the mini-
mization problems may very easily be solved on massively parallel processors
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such as GPUs. Another positive feature is that data-matching and regulariza-
tion are done independently, so one may easily replace one without changing
the minimization of the other—a fact that makes comparison of di↵erent types
of energies uncomplicated and fair, since the minimization is done in a fully
comparable framework.

2.1.1 TV-L1 optical flow

The by now classic duality based TV-L1 optical flow algorithm of Zach et al.
(2007) uses an L

1 norm for the data matching term F , and a vectorial total
variation term for the regularization G, giving an energy of the form

E(v) = �

Z

T
kR(v)(x)k dx+

Z

T
kDv(x)k dx, (2.6)

where R is the given constancy assumption, that is typically defined from some
variant of (2.1).

The TV-L1 formulation was originally proposed by Brox et al. (2004), who
also described a modern implementation in details, and gave a theoretical ac-
count for the choices. This algorithm marked a turning point with respect to
optical flow accuracy, that also helped boosting the performance of later algo-
rithms. The estimation in Brox et al. (2004) is based on the Euler-Lagrange
framework, which require smooth functionals, and so the Euclidian norms in
(2.6) are replaced with Charbonnier functions

k · k" =
p
k · k2 + "

2 (2.7)

where " is some small number.
Zach et al. (2007) proposed to recover a minimizer of (2.6) by iteratively

minimizing the two convex quadratically coupled problems described in (2.3).
In the given formulation, they are

E1(v) = �

Z

T
k⇢(v)(x)k dx+

1

2✓

Z

T
kv(x)� u(x)k2 dx, (2.8)

E2(u) =

Z

T
kDSu(x)k dx+

1

2✓

Z

T
kv(x)� u(x)k2 dx. (2.9)

where ⇢ is the linearization of a grayscale data fidelity term R, and the chosen
total variation term is defined as the sum of the total variation over all channels

Z

T
kDSu(x)k dx =

dX

i=1

Z

T
krui(x)k dx. (2.10)

The flow is recovered by iteratively minimizing these energies in a coarse-to-fine
pyramid scheme for some small ✓.

For one-dimensional images, using for example only the brightness, we get a
linearized data term of the form ⇢(v)(x) = a

>
v(x) + b, a 2 Rd and b 2 R. The

minimizer of E1 can be computed using the results given in Zach et al. (2007).
These results are replicated in general form in the following lemma.
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Lemma 2.1.1. For ⇢(v)(x) = a

>
v(x) + b, the minimizer of E1 is given by

v(x) = u(x)� ⇡�✓[�a,a]

✓
u(x) +

b

kak2a
◆

(2.11)

where ⇡�✓[�a,a] is the projection onto the line segment joining the vectors ��✓a
and �✓a,

⇡�✓[�a,a]

✓
u(x) +

b

kak2a
◆

=

8
><

>:

��✓a if ⇢(u)(x) < ��✓kak2

�✓a if ⇢(u)(x) > �✓kak2
⇢(u)(x)
kak2 a if |⇢(u)(x)|  �✓kak2

. (2.12)

The regularization energy (2.9) is elegantly minimized by the method of
Chambolle (2004). The solution is reproduced in the following lemma.

Lemma 2.1.2 (Chambolle). The minimizer u of E1 is given coordinatewise by

ui = vi � ✓r · pi

for i = 1, . . . , d, where pi : T ! Rd can computed by the iterative fixed-point
scheme

p

n+1
i =

✓ p

n
i + ⌧r(✓r · pni � vi)

✓ + ⌧ |r(✓r · pni � vi)|
.

These lemmas provide an elegant, and easily implementable solution to the
relaxed optical flow problem given by (2.8) and (2.9). On the other hand, the
given formulation is somewhat restrictive, for example it does not allow for
the use of vector valued images such as color images. In the next section, the
problem of having using an L

1-norm for data term with vector valued images is
considered. The problem is analyzed from a convex analysis point of view, and
a solution to the resulting energy (2.8) is given. These results were originally
proposed by Rakêt et al. (2011).

2.1.2 Minimizing a�ne L1-L2 energies

Consider an L

1-L2 energy of the following form

E1(v) = �

Z

T
kAv(x) + b(x)k dx+

1

2

Z

T
kv(x)� u(x)k2 dx (2.13)

where A : Rd ! Rk. Because no di↵erential of v is involved, the minimization of
(2.13) boils down to a pointwise minimization of a strictly convex cost function
of the form

f(v) = �kAv + bk+ 1

2
kv � uk2. (2.14)

In the following we present the tools used for solving the minimization problem
(2.14). We recall first a few elements of convex analysis, the reader can refer to
Ekeland & Teman (1999) for a complete introduction to convex analysis in both
finite and infinite dimension. Here we will restrict ourselves to finite dimensional
problems.
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A function f : Rd ! R is one-homogeneous if f(�x) = �f(x), for all � > 0.
For a one-homogeneous function, it is easily shown that its Legendre-Fenchel
transform

f

⇤(x⇤) = sup
x2Rd

{hx,x⇤i � f(x)} (2.15)

is the characteristic function of a closed convex set C of Rd,

dC(x
⇤) := f

⇤(x⇤) =

(
0 if x⇤ 2 C,

+1 otherwise.
(2.16)

The one-homogeneous functions that will interest us here are of the form f(x) =
kAxk where A : Rd ! Rk is linear, and k · k is the usual Euclidean norm of
Rk. The computation of the associated Fenchel transform involves the Moore-
Penrose pseudoinverse A

† of A. We recall its construction.
The kernel (or null-space) of A, denoted KerA, is the vector subspace of the

v 2 Rd for which Av = 0. The image of A, denoted ImA, is the subspace of Rk

reached by A. The orthogonal complement of KerA is denoted KerA?. Denote
by ◆ the inclusion map KerA? ! Rd and let ⇡ be the orthogonal projection
Rk ! ImA. It is well known that the composition map B = ⇡ �A � ◆

KerA? ◆�! Rd A�! Rk ⇡�! ImA (2.17)

is a linear isomorphism between KerA? and ImA. The Moore-Penrose pseu-
doinverse A

† of A is defined as

A

† = ◆ �B�1 � ⇡. (2.18)

With this, the following lemma provides the Legendre-Fenchel transform of f(x):

Lemma 2.1.3. The Legendre-Fenchel tranform of x 7! kAxk is the character-
istic function dC of the elliptic ball C given by the set of x’s in Rd that satisfy
the following conditions

A

†
Ax = x (2.19)

x

>
A

†
A

†>
x  1. (2.20)

From the properties of pseudoinverses, the equality x = A

†
Ax means that

x belongs to KerA?. In fact, A

†
A is the orthogonal projection on KerA?.

On this subspace, A†
A

†> is positive definite and the inequality thus defines an
elliptic ball.

The lemma will not be proven here, but we indicate how it can be done. In
the case where A is the identity Id of Rd, it is easily shown that C is the unit
sphere of Rd. The case where A is invertible follows easily, while the general
case follows from the latter using the structure of pseudoinverse (see Golub &
van Loan (1989) for instance).

We can now state the main result which allows to generalize the TV-L1

algorithm from Zach et al. (2007) to calculate the optical flow between two
vector valued images.
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Proposition 2.1.4. The minimizer of the function

f(v) = �kAv + bk+ 1

2
kv � uk2

is given as follows.

(i) In the case b 62 ImA, f(v) is smooth. It can be minimized by usual
methods.

(ii) In the case where b 2 ImA, f(v), which fails to be smooth for v 2
KerA+A

†
b, reaches its unique minimum at

v = u� ⇡�C

�
u+A

†
b

�
(2.21)

where ⇡�C is the projection onto the convex set �C = {�x, x 2 C}, with
C as described in Lemma 2.1.3.

Proof. To see (i), write b as Ab0 + b1, with b0 = A

†
b, Ab0 being then orthog-

onal projection of b onto ImA, while b1 is the residual of the projection. The
assumption of (i) implies that b1 6= 0 is orthogonal to the image of A. One can
then write

kAv + bk = kA(v + b0) + b1k =
p
kA(v + b0)k2 + kb1k2 (2.22)

which is always strictly positive as kb1k2 > 0, and smoothness follows.
In the situation of (ii), since b 2 ImA, we can do the substitution v  

v + A

†
b in function (2.14) and the resulting function has the same form as a

number of functions found in Chambolle (2004) and Chambolle & Pock (2011).
We refer the reader to them for the computation of minimizers.

Proposition 2.1.4 generalizes Lemma 2.1.1 since, on one-dimensional spaces,
elliptic balls are simply line segments. The next examples extends to multi-
dimensional values.

Example 2.1.1. Consider the minimization problem

argmin
v

✓
�kAv + bk+ 1

2
kv � uk2

◆
, � > 0. (2.23)

where A 2 Rk⇥2 and b 2 ImA. If A has maximal rank (i.e. 2), then is is well
known that the 2 ⇥ 2 matrix C = A

†
A

†> is symmetric and positive definite
(Golub & van Loan 1989). The set C is then an elliptic disc determined by
the eigenvectors and eigenvalues of C. The projection may be computed by the
e�cient algorithm described in Example 2.1.3, which has much better properties
than the method originally suggested in Rakêt et al. (2011).

In the case that the matrix has two linearly dependent columns a 6= 0 and
ca, a series of straightforward calculations give

KerA = Ry, KerA? = Rx, ImA = Ra (2.24)

with x = 1
1+c2 (1, c)

> and y = 1
1+c2 (�c, 1)

> an orthonormal basis of R2, and

A

†
A

†> =
1

(1 + c

2)2kak2

 
1 c

c c

2

!
. (2.25)
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If c = 0, the inequality (2.20) from Lemma 2.1.3, just amounts to

u

2
1

kak2  1 () �kak  u1  kak, u = (u1, u2)
> (2.26)

that is a vertical strip, while equality (2.19) in Lemma 2.1.3 simply says that
u2 = 0, thus C is the line segment

[�kakx, kakx] ⇢ R2
. (2.27)

The case where c 6= 0 is identical, and obtained for instance by rotating the
natural basis of R2 to the basis (x,y). �

Example 2.1.2. Consider again the minimization problem (2.23), but this time
assuming that b /2 ImA. Using (2.22) we can rewrite the minimization problem
as

argmin
v

✓
�

p
kA(v + b0)k2 + kb1k2 +

1

2
kv � uk2

◆
, � > 0. (2.28)

The minimizing v is found by solving the equation

�

A

>
A(v + b0)

kAv + bk + v � u = 0

which may be done by gradient descent or a (quasi-)Newton method. �

Example 2.1.3. Consider the problem of projecting a point x0 onto the ellip-
soid given by

C = {x 2 Rk |x>
Cx  1},

where x0 /2 C.
We may formulate this as the problem of finding the minimizer x̂ given by

x̂ = argmin
x2C

kx� x0k2.

This problem can be solved by introducing a Lagrange multiplier ⇠, giving the
objective function

f(x,�) = kx� x0k2 + ⇠(x>
Cx� 1).

From the condition that

@

@x

f(x, ⇠) = 2(x� x0) + 2⇠Cx = 0,

we get that
x̂ = (⇠C + I)�1

x0.

However we need to determine the value of the Lagrange multiplier ⇠. Since we
assumed that x0 was outside the ellipsoid, we know that the projected point
will lie on the boundary of the ellipse @C, that is ⇠ is a root of

G(⇠) = ((⇠C + I)�1
x0)

>
C(⇠C + I)�1

x0 � 1. (2.29)

We can use the following theorem due to Kiseliov (1994) to determine the
correct value of ⇠.
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Theorem 2.1.5. The root ⇠

⇤ of (2.29) is unique and can be found by the
iterative Newton process

⇠0 = 0, ⇠n+1 = ⇠n �
G(⇠n)

G

0(⇠n)
,

where ⇠k " ⇠⇤. The rate of convergence is quadratic.

Proof. Since we are assuming that x0 /2 C, it holds that

G(0) = x

>
0 Cx0 � 1 > 0, lim

⇠!1
G(⇠) = �1 < 0,

which gives that a root exists in [0,1).
Since

0 =
d

d⇠
(⇠C+I)�1(⇠C+I) =

✓
d

d⇠
(⇠C + I)�1

◆
(⇠C+I)+(⇠C+I)�1

✓
d

d⇠
(⇠C + I)

◆
,

we have that

d

d⇠
(⇠C + I)�1 = �(⇠C + I)�1

C(⇠C + I)�1 = �(⇠C + I)�2
C.

Using this we can di↵erentiate G

G

0(⇠) = �2x>
0 (⇠C + I)�3

C

2
x0

and in addition
G

00(⇠) = 6x>
0 (⇠C + I)�4

C

3
x0,

where we have used the commutativity of C and (⇠C + I)�1. Since (⇠C + I)�1

has full rank for all ⇠ � 0 we see that

G

0(⇠) < 0, G

00(⇠) > 0

so the solution ⇠

⇤ is unique.

Kiseliov (1994) in addition gives a non-linear version of the Newton process
described in the above theorem, which is even more e�cient. Compared to
the added complexity of the implementation, the overall gain of using such an
algorithm is limited, and we will recommend the process described here. �

2.1.3 Alternative optical flow formulations

In the wake of the algorithm by Zach et al. (2007), a large number of duality
based or primal-dual methods emerged in optical flow estimation. The initial
focus has mainly been on improving regularization. Wedel et al. (2009b) con-
siders structure and motion adaptive regularization. Werlberger et al. (2009)
has gone further to consider full anisotropic regularization, where regularization
directions are weighted di↵erently by means of a di↵usion tensor. In addition
the L1 norm used in the regularization of the original TV-L1 were replaced with
a Huber norm that is smooth at the origin, thus eliminating the staircasing
e↵ect of the regularization. In Werlberger et al. (2010) non-local total variation
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is considered, where a low level image segmentation is integrated in the regu-
larization. This in turn produces very sharp motion boundaries, and preserves
small scale structures in the flow very well.

In addition to the refinement of regularization techniques, some work has
been done on reformulating data terms. Wedel et al. (2008) shows how to min-
imize a sum of two L

1 data terms for one-dimensional images. Recognizing the
pointwise structure of many data terms, Steinbrücker et al. (2009a) proposed
to use brute-force minimization of the data fidelity energy (2.4), without lin-
earizing the optical flow constraint (2.1). A number of more advanced pointwise
data terms are considered in Steinbrücker et al. (2009b), but unfortunately the
quality of the resulting flows are not as impressive as one could hope for. Werl-
berger et al. (2010) use truncated normalized cross correlation for their data
term. This data term is attractive because of its invariance to multiplicative
illumination changes in the scene. It is however not defined pointwise, and thus
needs a more complex minimization strategy. This is done by a second order
approximation of the data term, in contrast to the usual first order approxi-
mation. Building on these ideas, Panin (2012) considers a mutual information
data terms. Although the benchmark optical flow results of Panin (2012) cannot
compete with a highly optimized TV-L1 implementation (Wedel et al. 2009a),
the algorithm shows impressive results under less optimal conditions such as
noise and transformations of the values in one of the images to be registered.

In the following we will consider some examples of alternative data and
regularization terms, and consider how they may be minimized. At the end we
will consider other extensions.

Example 2.1.4 (L2 data term). The cost function

f(v) =
�

2
kAv + bk2 + 1

2
kv � uk2

is clearly smooth and convex in v, so there is a unique minimizer to the problem
that can be found as the solution to

d

dv
f(v) = 0.

We readily get that

d

dv
f(v) = v � u+ �✓A

>(Av + b) = (I+ �✓A

>
A)v � u+ �✓A

>
b,

and the solution to the problem is

v = (I+ �✓A

>
A)�1(u� �✓A

>
b).

For comparison purposes it may be interesting to rewrite this solution as

v = u� �✓(I+ �✓A

>
A)�1

A

>(Au+ b).

Note that for k = 1, A> = a, so the above formula becomes

v = u� �✓(a>
u+ b)�✓

1 + �✓kak2 a. (2.30)

�
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Example 2.1.5 (Charbonnier norm). While the approach for minimizing the
vector valued data term in Section 2.1.2 is nice from a theoretical point of view,
the actual implementation of the solution given in Proposition 2.1.4 is not very
practical. The checks needed in order to determine which category the given
point falls into, and the iterative procedures needed to project onto an ellipsoid,
or for the solution of (2.28), result in an algorithm that is hard to implement
and quite slow. The original algorithm presented in Rakêt et al. (2011) dealt
with this somewhat inelegantly, by ensuring full rank of of the matrix A by
means of regularization, followed by projection of b onto ImA.

By replacing the Euclidian norm with the Charbonnier norm k · k" given
in (2.7), we may avoid the checks related to the cases of Proposition 2.1.4,
and instead just perform iterative minimization at all points following Example
2.1.2. �
Example 2.1.6 (Interval data term). Consider the following penalty function

'(x) = �1(�1,c1)(x)(x� c1) + 1(c2,1)(x)(x� c2)

where c1  0  c2 and 1 is the indicator function. This type of penalty may be
an interesting data term when data is very noisy, or in general when a perfect
data fit is not realizable over most of the image.

First consider a function of the form

'(x) + �(x� y)2.

If y 2 [c1, c2], it is minimized by x = y. For y � c2 we want to minimize

1(c2,1)(x)(x� c2) + �(x� y)2.

If �(y � c2)  1
/2 the minimizer is x = c2, and otherwise it is x = y � 1

/2�. A
similar expression is found for y  c1, giving the final solution

x =

8
>>>>>><

>>>>>>:

y + 1
/2� if y 2 (�1, c1 � 1

/2�)

c1 if y 2 [c1 � 1
/2�, c1)

y if y 2 [c1, c2]

c2 if y 2 (c2, c2 + 1
/2�]

y � 1
/2� if y 2 (c2 + 1

/2�,1)

.

Consider now the function

f(v) = '(a>
v + b) + �kv � uk2.

Denoting ⇢(v) = a

>
v + b, the solution can be found as

v =

8
>>>>>><

>>>>>>:

u+ 1
/2�a if ⇢(u) 2 (�1, c1 � 1

/2�kak2)
u� (⇢(u)� c1)a/kak2 if ⇢(u) 2 [c1 � 1

/2�kak2, c1)
u if ⇢(u) 2 [c1, c2]

u� (⇢(u)� c2)a/kak2 if ⇢(u) 2 (c2, c2 + 1
/2�kak2]

u� 1
/2�a if ⇢(u) 2 (c2 + 1

/2�kak2,1)

we see that for c1 = c2 = 0, the solution is identical to the one given in Lemma
2.1.1. In addtion it is interesting to note that similar calculations can be used
to give an explicit solution to the truncated L

1 data term, which was minimized
by brute force by Steinbrücker et al. (2009b). �
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Example 2.1.7 (Vectorial total variation). As already mentioned the total
variation of a vector valued function is not uniquely defined, and the di↵er-
ent definitions will give results with di↵erent properties. In the following it is
assumed that d = 2 for simplicity.

We have already introduced the channel-by-channel definition of the vectorial
total variation (2.10), which is used in the original formulation by Zach et al.
(2007).

The canonical definition of vectorial total variation, which is also the defini-
tion used by the original TV-L1 algorithm of Brox et al. (2004), is

Z

T
kDFu(x)k dx = sup

p2P

Z

T
hu(x),r · p(x)i dx (2.31)

with p : R2 ! R2⇥2, and where P = {p 2 C

1
c (R2

, R

2⇥2) : kpk2  1}. It is
worth noting that the definition of Zach et al. (2007) corresponds to the require-
ment that kpk1  1 in P. If we assume that u is smooth, using integration by
parts with proper boundary conditions yields that

sup
p2P

Z

T
hu(x),r · p(x)i dx = sup

p2P

Z

T

2X

i=1

hrui(x), pi(x)i dx. (2.32)

For ru 6= 0 the supremum is found to be

pi =
rui

kruk , kruk =
p
kru1k2 + kru2k2 (2.33)

and for ru = 0, p can be any function in P, which in turn means that for
smooth u

Z
kDu(x)k dx =

Z p
kru1(x)k2 + kru2(x)k2 dx =

Z
kru(x)k dx. (2.34)

This definition has some very nice properties. In particular it is rotationally
invariant, and couples the channels by weighting the regularization di↵erently
across the di↵erent channels.

This definition is not directly compatible with Chambolle’s algorithm (Lemma
2.1.2), however one may use the following algorithm proposed by Bresson &
Chan (2008), which is a direct extension.

Lemma 2.1.6. The minimizer u of (2.9) is given by

u = v � ✓r · p (2.35)

which can be solved with the convergent semi-implicit gradient descent scheme

p

n+1 =
p

n + ⌧r(r · pn � v

/✓)

1 + ⌧kr(r · pn � v

/✓)k (2.36)

where ⌧  1
/8, p0 = 0.

Recently Goldlücke et al. (2012) introduced an alternative definition of vec-
torial total variation. Assuming su�cient smoothness of u, this definition, which
we will denote by

Z

T
kDJu(x)k dx
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corresponds to the integral over the largest singular value of the derivative ma-
trix of u. This definition smooths in a single direction across channels, and thus
does not su↵er from the channel smearing e↵ects of the two previously defined
methods. The large number of examples given to color imaging by Goldlücke
et al. (2012) are very convincing, showing consistently better results of this
method in di↵erent applications. For the minimization of the energy (2.9) with
this choice of total variation, we will use the Bermùdez-Moreno (BM) type al-
gorithm given in Goldlücke et al. (2012), which is directly comarable to the
solutions given in lemmas 2.1.2 and 2.1.6.

In the following these three definitions will be denoted by TVS , TVF , and
TVJ respectively. �

Example 2.1.8 (1-harmonic regularization). As we have seen so far, it is com-
mon practice in optical flow estimation to formulate the regularization of the
optical flow by means of an L

p norm of the flow gradient. However, when con-
sidering the nature of optical flow fields, one realizes that this is perhaps not the
natural type of regularization. An optical flow field describes the motion of a
projected scene. Considering a scene where all motion is parallel to the camera
plane, and objects are rigid and move in a single spatial direction. In this setup
the displacement vectors of an object in the projected image will point in the
same direction, but the magnitude of the flow vectors will vary depending on
the distance of the particular part of the object to the camera. This suggests
that one should regularize direction to a higher extend than magnitude.

Additional directional regularization has been proposed by Gai & Steven-
son (2010) in the form of an additional 1-harmonic regularization term (Vese &
Osher 2002) to the original TV-L1 method Wedel et al. (2009a). A fully polar
representation of optical flow was considered by Adato et al. (2011), who demon-
strate good results on the Middlebury training data by completely decoupling
the angular and magnitude component of the flow. The chosen representation
does however increase the complexity of the formulation of the problem consid-
erably. In addition both methods are quite slow, and they owe much of their
precision to being built upon existing well-performing methods (Wedel et al.
(2009a) and Sun et al. (2010) respectively). It turns out that one may combine
the elements of the two mentioned methods, in an elegant manner, which in
addition has very attractive computational properties. The regularization term
we propose to use is the following

G(v) = ↵

Z

T

��rkv(x)k
�� dx+ (1� ↵)

Z

T

���r v(x)
kv(x)k

��� dx, 0  ↵  1.

The above regularization term is similar to the one of Adato et al. (2011), since
it completely decouples magnitude and direction, however, instead of having to
solve a constrained problem with an angular component, we use a 1-harmonic
term as in Gai & Stevenson (2010).

We are now interested interested in minimizing an energy of the form

E(v) = �F (v) +G(v).

Using the standard quadratic decoupling (2.3) will introduce a coupling of mag-
nitude and direction in the regularization, and in order to avoid that, we propose
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the following decoupling

E1(v) = �F (v) +
1

2✓

Z

T
kv(x)� u(x)k2 dx,

E2(u) =
1

2✓1

Z

T

��kv(x)k � ku(x)k
��2 dx+

1

2✓2

Z

T

�� v(x)
kv(x)k �

u(x)
ku(x)k

��2 dx+G(v).

In this formulation magnitude and directions are independent, and representing
flows this way will even allow for simultaneous minimization of the magnitude
and regularization parts of the flow. The magnitude regularization just corre-
sponds to one-dimensional total variation regularization, and may be minimized
following Chambolle (2004). The directional regularization may be solved e�-
ciently following Rakêt & Nielsen (2012).

When considering the splitting scheme, it does not seem as elegant as the
typical quadratic splitting, as it cannot directly be formulated as a single energy
in two variables. For ✓, ✓1, and ✓2 su�ciently small however, the two solutions
should converge to each other. In addition, if one considers the splitting as an
iterative estimation process, it does makes sense that minimization of the data
term gives a solution with fundamentally di↵erent properties than the estimate
produced by minimizing the regularization term. In this light it makes sense
that one should treat the previous estimate di↵erently in the two minimization
problems. This also gives a good explanation for the widespread use and success
of intermediate median filtering in duality based optical flow estimation (Wedel
et al. 2009a, Sun et al. 2010). �

Example 2.1.9 (Illumination and occlusion modeling). Illumination changes
in image sequences present a major problem for conventional optical flow esti-
mation. Changing light conditions from one frame to the next may render the
data term completely unable to match objects in the scene. Another problem
is the issue of occlusions, when an object (partly) disappears from one frame to
the next. This will naturally lead to violations of the optical flow constraint.

In the TV-L1 optical flow setting, Chambolle & Pock (2011) proposed to
model violations of the data term by adding a compensating term �c(x) to the
linearized optical flow constraint ⇢(v)(x). Illumination changes are expected to
a↵ect the residual ⇢(v)(x) similarly in connected regions, so Chambolle & Pock
(2011) proposed to regularize c using total variation. This new illumination field
may seamlessly be integrated to the algorithm in a similar fashion to was has
been done so far: We split data and regularization of c using a quadratic term
and minimize iteratively.

A similar method has been used for occlusion detection by Ayvaci et al.
(2012). A compensating term c is added to the data fidelity functional, however
since only occlusions are modeled, a sparsity enhancing L

0 regularization is
proposed. In the presented setup this gives the following data energy

E1(v, c) = �

Z

T
k⇢(v)(x)� c(x)k dx+

1

2✓

Z

T
kv(x)� u(x)k2 dx+ �kckL0

,

where the L

0 norm is defined as

kckL0 =

Z

T
kc(x)k`0 dµ(x), kyk`0 =

(
0 if y = 0

1 otherwise
,
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with µ denoting the Hausdor↵ measure. In order to minimize the full energy
using specific solvers Ayvaci et al. (2012) iteratively approximate the L0 term by
weighted L

1 terms. This does however seem somewhat unnecessary, as a closed-
form pointwise solution for c is easily found. In the duality based setting v may
be calculated using Lemma 2.1.1, and the minimizer of c is given pointwise as

c(x) =

(
⇢(v)(x) if k⇢(v)(x)k > �

/�

0 otherwise
.

This means that we simply have a thresholding step where if the data residual
⇢(v)(x) is too big, it is considered an occlusion, and motion in the area (which
in principle is not defined) is fully determined by the regularization term. �

2.2 Algorithm

This section will describe a general algorithmic framework for estimating dif-
ferent types of duality based optical flows from energies on the form (2.3). As
already mentioned the duality based approach has good computational proper-
ties, because the solutions to the two sub-energies may be done in parallel. This
makes the algorithm perfectly suited for massively parallel processors.

The structure of the algorithm is depicted in Algorithm 2.1.

Data: Two images I0 and I1

Result: The optical flow field v

for ` = `max to 0 do
// Pyramid levels

Downsample the images I0 and I1 to current pyramid level
for w = 0 to wmax do

// Warping

Compute v as the minimizer of E1 (2.4)
for i = 0 to imax do

// Inner iterations

Compute u as the minimizer of E2 (2.5)
end
Upscale v and u to next pyramid level

end

end
Algorithm 2.1: Computation of duality based optical flow.

The standard settings of the algorithm is described in the following. Unless
specifically mentioned, these are the settings used in the calculations described
in the rest of this thesis.

Pyramid An image pyramid is built, where on each level, prior to down-
sampling to the next pyramid level, the images are smoothed with a Gaussian
function of standard deviation �. The downsampling is done by means of linear
interpolation. Evaluation at non-pixel positions in images is done by bicubic
interpolation.
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Warping At the beginning of each warp, the image I1 is warped according to
the current estimate v. If median filtering is used to remove outliers (it is not
in the standard setting), it is performed on v prior to warping of I1.

Upscaling Flows are upscaled using linear interpolation, and their values are
divided by the downscale factor of the pyramid, in order for vector lengths to
match the current image size. This is followed by an application of a 3 ⇥ 3
median filter.

The standard parameters of the flow algorithm are given in Table 2.1.

Table 2.1: Standard parameters of the optical flow algorithm depicted in Algo-
rithm 2.1

Parameter value
`max 70

downscale factor 0.95

�

p
2
4

wmax 90

imax 20

� 50

✓ 0.2

The algorithm has been implemented in CUDA C in order to take advantage
of the thousands of cores on modern GPUs.

2.3 Results

This section presents optical flow results for the TV-L1 algorithm using the
implementation proposed in the previous section. In addition some of the ex-
tensions from Section 2.1.3 are considered, and analyzed.

Choosing TV definition Example 2.1.7 introduced three di↵erent defini-
tions of vectorial total variation. Using the algorithm described in the previous
section, we can consider the di↵erence in terms of accuracy of the resulting TV-
L

1 optical flow algorithm on the Middlebury Optical Flow Database training
data (Baker et al. 2011). Figure 2.1 shows the average endpoint errors (AEEs)
for the di↵erent definitions on the training sequences, as a function of �. We
see that generally the definitions that couple channels, TVF and TVJ , perform
better than the uncoupled regularization TVS . Figure 2.2 shows the average
performance over all test sequence, and we see an average di↵erence in AEE of
approximately 0.01 between using coupled or uncoupled regularization, for the
respective optimal choices of �s. This may not seem like much, but since optical
flow algorithms today have so high accuracies, an average improvement of this
order will give significantly di↵erent rankings of the algorithms on for example
the Middlebury ranking (as of January 14, 2013 the average di↵erence between
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the two top ranking methods in terms of AEE, MDP-Flow2 and NN-Field is
0.0025). Considering the coupled methods there seem to be little di↵erence in
the optimal area, and both choices seem reasonable. Based on this analysis we
choose the definition TVJ of Goldlücke et al. (2012) as our standard method,
because of its nice theoretical properties.
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Figure 2.1: Average endpoint errors for the three di↵erent definitions of total
variation TVS , TVF , and TVJ on training data plotted as a function of �.

Comparisson of methods With the algorithmic setup in place, we can eval-
uate the accuracy of the method. For a baseline method we consider the pre-
sented algorithm with standard parameters, using a one-dimensional data term,
and TVJ for regularization. Table 2.2 shows results for this method, compared
to results of the original algorithm by Zach et al. (2007), an improved version of
this algorithm presented by Wedel et al. (2009a), which among other things uses
structure-texture decomposition of the input images to remove lighting artifacts,
and uses intermediate median filtering. Finally we compare to the results pre-
sented in Rakêt et al. (2011), that are based on a color image data term solved
by Proposition 2.1.4.

We see that despite of its simplicity, the baseline method presented here
gives slightly better average results than the ones of Wedel et al. (2009a) and
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Table 2.2: Average endpoint error results for the Middlebury optical flow
database training sequences for di↵erent variants of the TV-L1 optical flow
algorithm. Baseline is the method following Algorithm 2.1 with standard pa-
rameters, using a 1D data term with grayscale images, and TVJ for regular-
ization. The second method is the RGB algorithm presented in Rakêt et al.
(2011). Third method is the original method of Zach et al. (2007), with results
are taken from Wedel et al. (2009a). The last column holds results of the so-
called TV-L1-improved algorithm (Wedel et al. 2009a). Bold indicates the best
result among the four

baseline Rakêt et al. Zach et al. Wedel et al.

Dimetrodon

0.17 0.16 0.26 0.19

Grove2

0.14 0.15 0.19 0.15

Grove3

0.57 0.57 0.76 0.67

Hydrangea

0.21 0.25 0.26 0.15

RubberWhale

0.13 0.17 0.22 0.09

Urban2

0.33 0.36 0.65 0.32

Urban3

0.51 0.50 1.07 0.63

Venus

0.31 0.49 0.48 0.26

average 0.296 0.331 0.486 0.308
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Figure 2.2: Average AEE computed across all sequences in Figure 2.1.

Rakêt et al. (2011). This evaluation is of course not optimal, since it is based
on training data, however, it seems to be a general fact that carefully optimized
implementations are of great importance when computing optical flow.

Figure 2.3: Frames 10 and 11 of the Army sequence of the Middlebury Optical
Flow Database test set.

Smoothness and visualization of optical flows Consider the two frames
from the Army sequence in Figure 2.3. The ground truth motion represented
in color coding can be found in Figure 2.4. In this representation hue codes the
direction of the flow vectors, and saturation indicates the length of the vectors.
Black corresponds to occluded areas.

Figure 2.5 shows the estimates produced with the baseline method for three
di↵erent values of �. We see that with the standard choice of � = 50 we are able
to properly estimate most details. Increasing � produces a less regular flow with
more noise artifacts, and decreasing it produces flows where small structures
are blurred out. In contrast, substituting the data term with the interval data
term presented in Example 2.1.6, and varying the size of the interval where no
penalty is given, produces another type of smooth flows. With this data term
small variations are ignored in the minimization, and the estimation is driven
by big di↵erences that may be found at for example edges. This is evident from
the results, where edges are preserved quite well, while the interior of objects
are very smooth.
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Figure 2.4: Ground truth optical flow between the two frames from Figure 2.3.
Flow vectors are coded according to the color legend in the lower right corner.

� = 10 � = 50 � = 100

Figure 2.5: Optical flow between the two frames from Figure 2.3 with baseline
method.

� = 100,
�c1 = c2 = 0.02

� = 100,
�c1 = c2 = 0.01

� = 100,
�c1 = c2 = 0.005

Figure 2.6: Optical flow between the two frames from Figure 2.3 with interval
data term (Example 2.1.6), and everything else as in the baseline method.
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Chapter 3

Applications

This chapter presents five novel applications of the optical flow methods re-
viewed so far. The first application considers registration of X-ray images of
hands. The second application presents a specialized registration problem for
2D chromatograms, and introduces a novel solution strategy. The last three ap-
plications look into interpolation in image sequences. The first of these presents
a general method where optical flow data terms are reparametrized to fit the in-
terpolation assumptions, which turns out to produce superior results compared
to conventional methods. The last two applications are related to distributed
video coding. We consider interpolation when depth information of the scene
is available, and finally we consider how to give new estimates of in-between
frames using partially decoded information about the frame in question.

3.1 Registration of X-ray images

One of the major application areas of registration algorithms is medical images,
where proper analysis of the data is often impossible without first registering
the images. In this setting TV-L1 registration o↵ers a number of advantages
over typical methods. In particular the parallel nature of the algorithms, and
the associated speed when implemented on massively parallel processors, but
also the robustness of the L1 norms used in both data and regularization terms.
This makes TV-L1 a good choice for out-of-the-box registration to a large body
of problems. On the downside, TV-L1 does not necessarily produce di↵eomor-
phic registrations, and in applications where this is of importance, one may
either try to manually enforce this behavior, or consider methods for di↵eomor-
phic registration (see for example Sommer et al. (2012) and references therein).
Furthermore, if images are taken on completely di↵erent imaging devices, and
cannot easily be brought on similar scales, one will prefer a data term suit-
able for these types of problems. One type of data term that can handle such
problems is mutual information, which has recently been considered by Panin
(2012). The TV-L1 optical flow method has previously been used for registra-
tion in Pock et al. (2007), where CT scans of lungs as well as brain MRI images
were registered.

Consider the X-ray images of two di↵erent hands in Figure 3.1. Registering
I1 to I0 is by no means a simple task: The two hands have significantly di↵erent
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bone structure; the contrast of the images and the amount of noise is di↵erent;
and the two lead tags that are placed in the image represent information that
should not be registered. This last issue may very well ruin the registration
process for many types of methods. Undeterred by these facts, a registration
using the standard settings with � = 10 and one level of 3⇥ 3 median filtering
has been performed. The registration results can be found in Figure 3.2. It is
seen that we get a quite decent registration, with the only big artifact being
caused by the lead tag in I1. However, this artifact only causes local changes,
which do not propagate down to the hand, as can be seen in the deformation
visualization. Note that the lead tag in I0 does not cause any artifacts. This is
due to the fact that the corresponding area in I1 is homogeneous, which means
that the updates caused caused by the data term in this area are essentially zero
(Lemma 2.1.1).

3.1.1 Registration of structural images

The problem of registering the images in Figure 3.1 is in many ways di↵erent
from the optical flow problem applied to video sequences. In video data, the
same objects are occurring in consecutive pairs of images, and we want to use
the fine details in the images to get correct correspondences. In the case of
images of two di↵erent objects, a true one-to-one correspondence does not ex-
ist, and trying to match fine details may just amount to noise matching—both
in terms of actual noise, or person specific structure that may from a larger
perspective be considered as inter-personal serially correlated noise structures.
This means that one may benefit from filtering or regularization of the images
thereby enhancing dominant structures and removing fine details. Such an ap-
proach contrasts the successful structure-texture decomposition used in several
optical flow algorithms (Wedel et al. 2009a, Sun et al. 2010), where the struc-
tural part of the images obtained from regularization are subtracted from the
original image. This produces an image that mainly contains texture details.
The structures that are removed often include shadows and general illumination
changes, which will in turn give better estimates.

Here we will consider two types of regularization. ROF regularization (Rudin
et al. 1992) where we regularize the observed image I

0 using total variation
regularization

EROF(I) = �

Z

T
kI(x)� I

0(x)k2 dx+

Z

T
krI(x)k dx. (3.1)

Furthermore, we consider a type of regularization that enhances sparsity even
further, where the L

1 norm of the gradient is replaced by an L

0 norm that
penalize all deviations from 0 equally

EL0(I) = �

Z

T
kI(x)� I

0(x)k2 dx+

Z

T
krI(x)k`0 dµ(x), (3.2)

where µ denotes the Hausdor↵ measure.
The ROF model may be minimized e↵ectively using Lemma 2.1.2, and the

minimizer of (3.2) may be computed using the method described in Xu et al.
(2011). As opposed to many other types of regularization, these methods are
edge preserving, and the L0 regularization of the gradient produces cartoon-like
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I0 I1

Figure 3.1: X-ray images of two di↵erent hands. Sources are
http://mrmackenzie.co.uk/2011/11/01/x-rays-in-medicine/ and
http://images.suite101.com/460740_com_28_hand.jpg.

I1 registered Deformation of
coordinate system

Di↵erence between I0

and registered I1

Figure 3.2: Registration of I1 to I0 using the standard TV-L1 algorithm with
� = 1 and one level of 3⇥ 3 median filtering.
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results with strong edges and large flat regions of zero gradient. The regular-
ization results of these methods with respectively � = 10 and � = 200 can
be found in Figure 3.3. The corresponding registrations, computed using the
same parameters as before, are found in figures 3.4 and 3.5. While the results
look very similar to the ones found in Figure 3.2, we see that the results for
the regularized images tend to deform the coordinate system outside the hand
to a greater extend than the non-regularized case. The reason for this is that
the gradients driving the registration are small or zero inside the bones after
regularization. This is desirable both from a practical point of view, since the
purpose of these types of registrations are typically to align bones in a similar
coordinate system, as opposed to bending and deforming the interior of bones
to produce a good match. A somewhat similar e↵ect can also be achieved by
using the interval data term from Example 2.1.6 instead of the L

1 norm in the
optical flow algorithm.
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ROF regularized I0 ROF regularized I1

L

0 regularized I0 L

0 regularized I1

Figure 3.3: Results of ROF and L

0 regularization on the images from Figure
3.1.
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I1 registered Deformation of
coordinate system

Di↵erence between I0

and registered I1

Figure 3.4: Registration of I1 to I0 after ROF regularization using the standard
TV-L1 algorithm with � = 1 and one level of 3⇥ 3 median filtering.

I1 registered Deformation of
coordinate system

Di↵erence between I0

and registered I1

Figure 3.5: Registration of I1 to I0 after L

0 regularization using the standard
TV-L1 algorithm with � = 1 and one level of 3⇥ 3 median filtering.
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Figure 3.6: Example of a chromatogram along with the absorbance (A.U.) curves
corresponding to two fixed wavelengths.

3.2 Registration of 2D chromatograms

Chromatography is a process for separating mixtures. One use of chromatog-
raphy is measuring relative proportions of analytes in a number of mixtures, to
determine di↵erences. An example of a 2D chromatogram is shown in Figure 3.6.
The chromatograms we are considering have been generated using ultra-high-
performing liquid chromatography with diode-array-detection (Petersen et al.
2011). The chromatograms consists of 209 wavelengths each measured at 24,000
retention times. The subject of the analysis is rapeseed seedlings having been
exposed to di↵erent levels glyphosate (commonly known as Roundup R�).

The images arising from this procedure will have shifts in retention time,
but because of the experimental setup, no such shifts occur in the wavelength
dimension. This means that we have a one-dimensional registration problem for
a two-dimensional image.

Consider the single wavelength of four chromatograms shown in Figure 3.7.
The retention time shifts are clearly visible. Furthermore there seem to be a
varying detector sensitivity, resulting in some of the curves consistently having
higher peaks that others. Finally there are small variations that cannot be ex-
plained by the mentioned issues, and which can be ascribed to serially correlated
e↵ects and noise.

3.2.1 Registration algorithm

Given two chromatograms I0, I1 : T ! R of size k ⇥ n, where T = Tw ⇥
Tt, consider the problem of estimating the disparity v : Tt ! Tt such that
I1(w, t+ v(t)) is properly registered to I0(w, t). Because of the varying detector
sensitivity, a robust data term such as an L

1 norm is preferable.
From the point of view of Section 2.1.2 the natural formulation of the data

term is as a vector valued problem. Let

Ii(t) =

0

B@
Ii(w1, t)

...
Ii(wk, t)

1

CA .
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Figure 3.7: A range of retention times for a single wavelength for four chro-
matograms.

The optical flow constraint may then be written as

I1(t+ v(t))� I0(t) = 0.

Linearizing this around a given estimate v0, we get the following system of
equations

@tI1(t+ v0)
a

v(t)�@tI1(t+ v0)v0 + I1(t+ v0)� I0(t)
b

= 0.

Considering an L

1 norm of this linearization of this data term, we see that
the case (ii) of Proposition 2.1.4 is very easily calculated, however, it seems
unlikely that it will ever be the case that b 2 Ima for just a moderate number
of wavelengths. This means that we will almost surely be in the less attractive
case (i) where we have to minimize by some iterative procedure.

An novel alternative for registering this dataset has been described in Rakêt
& Markussen (2014). The idea is to treat the one-dimensional vector valued
registration problem as a two-dimensional problem, and couple the di↵erent
vector channels through the regularization rather than through the data term.
The method is generally applicable, and works by posing an d dimensional
registration problem with data taking values in a k dimensional space, as a one-
dimensional registration problem on a d+ 1 dimensional domain. This is done
by treating the vector channels as an added dimension to the domain. This
way the regularization will be d + 1 dimensional, and by enforcing strong (or
increasing) weight on the regularity across this new dimension, information is
propagated between the di↵erent channels of the image to produce a registration
that is homogeneous along the new dimension.

As described above, we start out by estimating disparities for each wave-
length. In the given example we are interested in a robust L1 norm for the data
term. The robustness is important because of the varying detector sensitivity
and serially correlated e↵ects, where for example an L

2 norm may cause prob-
lems in relation to outliers. For regularization, we are interested in a term, that
in addition to imposing regularity on the estimated disparities, regularize across
wavelengths. Since one must expect drifts in retention time to be continuous,
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the registration should be smooth, and therefore we will regularize using squared
gradient magnitude instead of total variation. The energy to be minimized looks
as follows

E(v) = �

Z

T
kI1(w, t+ vw(t))� I0(w, t)k dw dt+

Z

T
krw,tvw(t)k2 dt.

This functional is minimized following the methods described in Chapter 2 where
the data term is iteratively approximated by its first-order Taylor approximation
around the given estimate v

w
0

⇢(v)(w, t) = @tI1(w, t+ v

w
0 (t))(v(t)� v

w
0 (t)) + I1(w, t+ v

w
0 (t))� I0(w, t).

Furthermore data-fidelity and regularization are decoupled by means of a quadratic
proximity term

E(v,v0) = �

Z

T
k⇢(vw)(w, t)k dw dt

+
1

2✓

Z

T
kvw(t)� v

0
w(t)k2 dt+

Z

T
krw,tv

0
w(t)k2 dt

where ✓ is su�ciently small. Using Proposition 2.1.4, the pointwise solution in
vw is found to be

vw(t) = v

0
w(t)� �✓

8
>><

>>:

�@tI1(w, t+ v

w
0 (t)) if ⇢(v)(w,t)

�✓ < �|@tI1(w, t+ v

w
0 (t))|2

@tI1(w, t+ v

w
0 (t)) if ⇢(v)(w,t)

�✓ > |@tI1(w, t+ v

w
0 (t))|2

⇢(v)(w,t)
@tI1(w,t+vw

0 (t)) if |⇢(v)(w,t)|
�✓  |@tI1(w, t+ v

w
0 (t))|2

.

The problem in v

0
w is just a standard Tikhonov regularization problem, and

can easily be solved using standard methods. E is minimized iteratively in a
coarse-to-fine manner, where the input images and the corresponding disparities
are gradually upsampled in the retention time dimension, but the wavelength
dimension is kept at its original size. Following Algorithm 2.1 we use `max = 160
and a scaling factor between levels of 0.97, yielding a downsampling factor at
the coarsest level of approximately 130. wmax = 100 warps are performed at
each level, and � was set to 60, while ✓ was fixed at 0.1.

Figure 3.8 shows the individual wavelength registration curves (gray) of the
described method, as well as the average (red) for two 2D chromatograms. The
weighting of the wavelength dimension of the gradient in the Tikhonov regu-
larization are respectively a factor 0 (i.e. registering each wavelength indepen-
dently) and 10. As we can see, with the higher weight we are able to propagate
information between wavelengths very well, and end up with a uniform result
across wavelengths. Note in addition that the average curves are quite di↵erent
in the two cases.

The average registration is used as the final single disparity v : Tt ! Tt.
The registration was then done by warping the chromatograms according to v

for each wavelength. The result of the registration procedure on the data in
Figure 3.7 can be found in Figure 3.9. We see that the data is very well aligned
after registration.
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Independent registration of wavelengths

Dependent registration of wavelengths

Figure 3.8: Registration curves of individual wave lengths (gray) with the aver-
age registration plotted on top (red).
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Figure 3.9: The chromatograms from Figure 3.7 registrated along retention
time.
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3.3 Image interpolation with a symmetric opti-
cal flow constraint

Frame interpolation is the process of creating intermediate images in a sequences
of known images. The process has many uses, for example video post-processing
and restoration, temporal upsampling in HDTVs to enhance viewing experience,
as well as a number of more technical applications, in for example in video coding
(Girod et al. 2005, Huang et al. 2011).

In this section we will review optical flow based frame rate upsampling which
performs interpolation along the motion trajectories. In particular, we will
review the method presented in Rakêt et al. (2012a), where the optical flow
energy is reparametrized such that it fits better to the given problem. The
reparametrized energy has a symmetric data fidelity term, that uses both sur-
rounding frames as references. We show that one can improve modern frame
interpolation methods substantially by this powerful generic trick, that can be
incorporated in existing schemes without requiring major adaptations. We an-
alyze the reparametrization, and show experimentally that it has a substantial
e↵ect on the stability and robustness of the interpolation process.

The idea to symmetrize data matching terms to achieve better results has al-
ready established its usefulness in other areas. In image registration Christensen
& Johnson (2001) explored the benefit of penalizing consistency, by jointly esti-
mating forward and backward transforms, and requiring that they were inverses
of one another. A similar idea was applied to the optical flow problem by Al-
varez et al. (2007a), who imposed an additional consistency term. Later that
same year Alvarez et al. (2007b) proposed a reparametrization similar to the
one derived here, in order to avoid a reference frame, and thereby increase flow
consistency. However, they did not use the obtained symmetric flow directly,
but interpolated flow values at pixel position of a reference image in order to ob-
tain a flow comparable to the standard asymmetric flow. Recently Chen (2012)
used a symmetric data term for surface velocity estimation, noting the property
that motion vector length is halved, which in turn gives better handling of large
displacements.

Apart from being algorithmically di↵erent, the di↵erence between the jus-
tification for the reparametrization given here and the justifications of Alvarez
et al. (2007b) and Chen (2012) is that we have chosen the symmetric data fidelity
term because it explicitly models the standard interpolation assumption, rather
than improves some notion of consistency, or better handles large displacements.
In turn this also means that we may use the estimated flows directly on the un-
known frame, and thereby avoid the problems related to temporal warping. As
we will show, the mentioned benefits are clearly reflected in the results. It is
demonstrated that using a symmetric flow for interpolation is generally better
than using either forward or backward flows or both.
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3.3.1 Motion Compensated Frame Interpolation

Given two images I0 and I1 and an estimate of the (forward) optical flow vf we
are interested in estimating the in-between image I1/2 (the methods are easily
extended to any in-between frame It, t 2 (0, 1)). A simple approach is to
assume that the motion vectors are linear through I1/2 and then fill in I1/2 using
the computed flow. However, since vf is of sub-pixel accuarcy, the points x +
1
/2vf (x) that are hit by the motion vectors are generally not pixel positions. This
is often solved by warping the flow to the temporal position of the intermediate
frame I1/2 (Baker et al. 2011, Herbst et al. 2009, Werlberger et al. 2011), in

which one defines a new flow v

1/2
f from I1/2 to I1

v

1/2
f (round(x+ 1

/2vf (x))) = 1
/2vf (x), (3.3)

where the round function rounds the argument to nearest pixel value in the
domain. There are some drawbacks to this approach. First, if the area around
x in I0 is occluded in I1, there are likely multiple flow candidates assigned to the
point round(x+ 1

/2vf (x)). In the converse situation, i.e. dis-occlusion from I0

to I1 there may be pixels that are not hit by a flow vector, thus leaving holes in
the flow. While the first problem can be solved by choosing the candidate vector
with the best data fit, that is the candidate vf for which kI1(x+vf (x))�I(x)k is
smallest, the solution for the problem of dis-occlusions in not that simple. Here
we will simply fill the holes in the flow field by an outside-in filling strategy.
With a dense flow we can then interpolate I1/2 using the forward scheme

I1/2(x) =
1

2

⇣
I0(x� v

1/2
f (x)) + I1(x+ v

1/2
f (x))

⌘
, (3.4)

or consider the backward flow vb (i.e. the flow from I1 to I0) and use a backward
scheme accordingly. We will in addition consider a bidirectional interpolation
scheme where the frame is interpolated as the average frames obtained by the
forward and backward schemes.

One can sophisticate the interpolation methods by estimating occluded re-
gions and selectively interpolating from the correct frame. We will not pursue
any occlusion reasoning here, but refer to Herbst et al. (2009) and Stich et al.
(2008) for details.

3.3.2 Reparametrizing Optical Flow for Interpolation

The approach presented in the previous section is the standard procedure for
frame interpolation and serves as backbone in many algorithms (Baker et al.
2011, Huang et al. 2011, Keller et al. 2010, Werlberger et al. 2011). In this
section we will reparametrize the original energy functional so the recovered
flow is better suited for interpolation purposes. The reparametrization turns
out to be beneficial on a number of levels: It makes the temporal warping of
the flow superfluous, eliminates the need to calculate flows in both directions,
improves handling of large motion, and increase overall robustness.

The original optical flow energy functional take as argument an optical flow
v that is defined on a continuous domain. In practice, however, we only observe
images at discrete pixels, and the optical flow is typically only estimated at the
points corresponding to the pixels in I0. Since we assume that the intermediate
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frame I1/2 can be obtained from linearly following the flow vectors, we propose
to reparametrize the data fidelity functional of the TV-L1 optical flow energy
using this assumption, so that it is given as

1

2

Z

T
kI1(x+ vs(x))� I0(x� vs(x))k dx. (3.5)

We note that in this parametrization, the coordinates of the optical flow
matches those of the intermediate frame I1/2, and using this data term will thus
eliminate the need for warping of the flow, since interpolation can directly be
done similarly to (3.4). Because the motion vectors of the symmetric flow vs

are only half of the ones of the forward or backward flows, we need to halve the
corresponding � to keep comparison fair, which is the reason for the factor 1

/2.
Linearizing the data matching term (3.5) around v0 gives

⇢(vs) = I1(·+ v0)� I0(·� v0) + (JI1(·+ v0) + JI0(·� v0))(vs � v0) (3.6)

which is of the form (2.14). For grayscale images the corresponding split energy
term (2.8) is easily minimized using Lemma 2.1.1, and in general using the L1-L2

minimization described in Proposition 2.1.4.
The di↵erences between (3.6) and the conventional linearization are that

we now allow sub-pixel matching in both surrounding images, and instead of
a single Jacobian we have a sum of two. Thinking of this linearization as a
finite di↵erence scheme corresponding to a linearized di↵erential form of the
data fidelity term (Horn & Schunck 1981), we see that the temporal derivative
is represented by a central finite di↵erence scheme, as opposed to the typical
forward di↵erences. In addition the sum of the two Jacobians should make the
estimation procedure more robust to noise, as the noise amplification caused by
derivative estimation is now averaged over two frames—a fact that has previ-
ously been used heuristically to improve accuracy in asymmetric flow estimation
(Wedel et al. 2009a). Finally we note that the motion vectors will only have
half the length of the ones obtained from the regular parametrization. This
will make the method better suited to handle large displacements compared to
traditional methods that only make use of a one-sided linearization.

3.3.3 Results

Motion compensated frame interpolation finds many uses, ranging from the more
technical applications such as video coding (Girod et al. 2005, Huang et al. 2011,
Luong et al. 2012) to disciplines like improving viewing experience (Keller et al.
2010) or restoration of historic material (Werlberger et al. 2011). For the former
type of application the reconstruction quality in terms of quantitative measures
is of great importance. For the latter types it is hard to devise specific measures
of quality, as the human visual system is very tolerant to some types of errors,
while it instantly notices other types.

For the results presented in the following, the optical flows have been com-
puted using the algorithm illustrated in Algorithm 2.1, with standard parame-
ters, except: On each level wmax = 60 warps are performed with imax = 5 inner
iterations of a Bermùdez-Moreno type algorithm for minimizing the vectorial
total variation TVJ .
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Figure 3.10: Performance for varying � on the four High-speed camera training
sequences from the Middlebury Optical Flow benchmark.

As a first experiment we compare the four di↵erent types of interpolation
suggested in the previous sections, on the four High-speed camera training se-
quences of the Middlebury Optical Flow benchmark (Baker et al. 2011). Figure
3.10 shows the e↵ect of varying the data term weight � in terms of the mean ab-
solute interpolation error (MAIE). We see that the symmetric flow outperforms
the conventional approaches, and that it is typically less sensitive in terms of
the choice of �. In particular we see that the di�cult Beanbags sequence which
contains large displacements is handled much better by the symmetric scheme.
By evaluation on the Middlebury training set it was found that � = 35 gave the
best overall performance for the symmetric flow, and that � = 20 gave the best
performance for the other three methods. These � values will be used in the
rest of the experiments presented in this section.

Consider as a second example the results of interpolation under noise pre-
sented in Figure 3.11. This figure shows the mean square interpolation error per-
formance of the four methods on the Beanbags sequence with additive N (0,�2)
noise. The improved robustness of the symmetric interpolation method is clearly
visible from the distances between the MAIEs to the asymmetric methods that
increase as the standard deviation of the noise increases. In addition we see that
the variance of the MAIEs across the independent replications is significantly
lower for the symmetric method compared to the three other methods.

Now consider, as a third example, the frames given in Figure 3.12. The
sequence has large displacements (> 35 pixels) and severe deformations, which
makes the estimation of I1/2 very di�cult. Figure 3.13 shows the three di↵erent
flows vf , vb and vs along with the corresponding interpolated frames. Zoom ins
of details can be found in Figure 3.14. We see that the result generated by the
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Figure 3.11: Mean square interpolation error performance under additive
N (0,�2) noise for varying �. Results are for the Beanbags sequence, and are
based on 10 independent replications.

symmetric flow is visually more pleasing than the ones produced by the forward
and backward flows, a fact that is also clearly reflected in the MAIEs and root
mean square interpolation errors (RMSIE).

Finally let us compare the method to some methods of the current state-
of-the-art. Table 3.1 holds the RMSIEs for six sequences from the Middlebury
Optical Flow benchmark and results for a number of methods. While the results
cannot fully match those of Stich et al. (2008), which gives significantly better
results on 3 of the sequences, our method outperforms all other approaches,
including the recent and much more complex methods of Chen & Lorenz (2011)
and Werlberger et al. (2011).

Real-time performance In the presented setup we only have to compute a
single flow field between two images and fill in the intermediate frame from the
trajectories. The runtime of the interpolation is dominated by the time it takes
to compute the flow field, and at a slight cost in accuracy (5 pyramid levels
with a scale factor of 2, and 30 warps per level, 1 level of median filtering) the
flow fields can be computed in real-time (⇠35 fps) for 640 ⇥ 480 images using
an NVIDIA Tesla C2050 GPU, which in turn means that we can do real-time
frame doubling of 30fps video footage at a resolution of 640⇥ 480 pixels.

Figure 3.12: Frames 7 (I0), 10 (I1/2) and 13 (I1) of the Mequon sequence.
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Forward Backward Symmetric

MAIE 8.72, RMSIE 20.30 MAIE 8.85, RMSIE 20.09 MAIE 8.23, RMSIE 19.02

Figure 3.13: Results for the Mequon sequence. Top row: Color coded optical
flows, buttom row: Interpolation results. Zoom ins of details can be found in
Figure 3.14.

Ground truth Forward Backward Symmetric

Figure 3.14: Details of the interpolated Mequon frame from Figure 3.13.
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Table 3.1: RMSIE for di↵erent Middlebury sequences. Bold indicates the best
result. †Results are taken from Stich et al. (2008). ‡Marked algorithms have
not been implemented by their respective authors, but are based on alternative
implementation on the Middlebury Optical Flow database.

Method Dimetrodon Venus Hydrangea RubberWhale

Symmetric TV-L1 1.93 3.45 3.36 1.46
Chen & Lorenz (2011) 1.95 3.63 — —
Werlberger et al. (2011) 1.93 — — —

Stich et al. (2008) 1.78 2.88 2.57 1.59
Bruhn et al. (2005)†,‡ 2.59 3.73 — —
Zitnick et al. (2005)† 3.06 5.33 — —

Black & Anandan (1996)† 2.56 3.93 — —
Pyramid Lukas-Kanade†,‡ 2.49 3.67 — —

Method MiniCooper Walking

Symmetric TV-L1 3.96 2.89
Werlberger et al. (2011) 4.55 3.97
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Figure 3.15: Frame 90 of the Breakdancers sequence from Microsoft Research,
with its corresponding depth map.

3.4 Image interpolation using depth data

In recent years, the 3DTV and 2D-plus-depth formats have seen an increasing
popularity. While conventional methods for frame interpolation usually work
on a pair of outer images, similar to the one to be interpolated, these hybrid
formats o↵er some new challenges and opportunities.

Distributed video coding (Girod et al. 2005) provides an interesting appli-
cation of frame interpolation, and variations of both standard and symmetric
optical flow based methods have been used in this area (Huang et al. 2011, Rakêt
et al. 2012b). In distributed video coding, a set of key frames is coded using
conventional coding, and intermediate frames are coded using Wyner-Ziv coding
(Aaron et al. 2002). From the point of view of this application, the key frames
can be considered given, and in order to decode the intermediate Wyner-Ziv
frames, estimates to be used as side information in the decoding process must
be generated. For the 2D-plus-depth format, one may code the depth map very
e�ciently (Zamarin & Forchhammer 2012), and use the depth frames in ad-
dition to the given key frames. This is beneficial, since depth frames usually
contain most of the information needed for proper motion estimation, as can
be seen in Figure 3.15. The following sections describe a scheme that was de-
vised for Salmistraro, Rakêt, Zamarin, Ukhanova & Forchhammer (2013). The
converse scheme, where texture frames are used to model depth movement has
been investigated in Salmistraro, Zamarin, Rakêt & Forchhammer (2013).

3.4.1 Optical flow computation using brightness and depth

Denote by It�1, It+1 the two (brightness) key frames, which we want to use for
interpolating the intermediate frame It. Furthermore, let two depth frames Dt,
and Dt+1 be given. We can generalize the approach presented in Section 3.3,
so in addition to the symmetric data term (3.5) we also include an asymmetric
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term for the depth frames to the energy

E(v) = �1

Z

T
kIt+1(x+ v(x))� It�1(x� v(x))k dx

+ �2

Z

T
kDt+1(x+ v(x))�Dt(x)k dx

+

Z

T
kDJv(x)k dx.

(3.7)

With two data terms, this energy does not fit in to any of the methods
described so far unless �1 = 0 or �2 = 0. For a sum of two L

1 norms, the
solution may however be found explicitly, by means of the results in Wedel
et al. (2008).

The advantage of the full formulation (3.7), as opposed to a purely symmetric
data term (�2 = 0), is that we have a smaller temporal gap on the depth data,
which means that we may recover some of the non-linear motions between the
two key frames. In addition, this smaller gap produces a better estimate, as
the displacements are smaller. The outer key frames may then help getting
the apparent motion right where the depth frames does not supply enough
information. This may for example be texture, and shadows that does not show
up in the depth maps.

3.4.2 Interpolation

When interpolating a frame in an image sequence, we are interested in using
information from both surrounding frames. Thus we compute the forward flow
vf as described in the previous section, and a backward flow vb, where we
interchange It+1 and It�1 and replace Dt+1 with Dt�1 in (3.7).

The results are asymmetric because of the depth information, and thus a
symmetric interpolation such as (3.4) should not be used. Instead we simply
interpolate by

It(x) =
1

2

�
It�1(x+ vb(x)) + It+1(x+ vf (x))

�

where the sub-pixel locations are evaluated using bicubic interpolation.

3.4.3 Results

With the energy (3.7) it is natural to consider three distinct cases. These will
be denoted by T2T (�2 = 0), D2T (�1 = 0), and DT2T (�1 6= 0, �2 6= 0).

The motion estimates are recovered following Algorithm 2.1 with standard
settings, except that `max = 65, imax = 10, and � = 0.5 for T2T and DT2T,
while � = 0.35 for D2T. For the T2T method �1 was set to 40, for D2T �2 = 30,
and �1 = 5, �2 = 40 for DT2T.

We evaluate the method on the sequences Breakdancers and Ballet from
Microsoft Research (Zitnick et al. 2004), and Dancer from Nokia Research. We
use the central view of the three sequences, at 15 fps downsampled to CIF
resolution.

In Table 3.2 we see that the symmetric interpolation T2T gives the worst
results, and that D2T that only uses depth improves the average interpolation
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quality by 1.4 dB. Combining both the symmetric and depth information in
DT2T, we gain an additional 0.8 dB.

Table 3.2: Average peak-signal-to-noise-ratio of interpolated frames for the three
di↵erent methods for the first 100 frames of the sequences.

Method Ballet Breakdancers Dancer

T2T 34.7 27.5 30.5
D2T 37.0 28.5 31.4
DT2T 38.0 29.0 32.3

Figure 3.16 shows an interesting example from the Dancer sequence. In this
example there are large movements of shadows, that are not visible in the depth
images. The optical flows for the three methods, along with the interpolated
frames can be found in Figure 3.17. We see that the shadow on the wall is
interpolated quite well for the T2T method, while the movement of the dancer
is less well modeled due to the large temporal distance between the key frames.
For the D2T method, the movements of the dancer are well captured, but no
movement is identified in the wall area, and the interpolation is just the average
of the outer frames. The DT2T method identifies both the movement of the
dancer as well as the shadows, and gives a better overall result than the two
other methods.

Figure 3.16: Frames 94, 95, and 96 and corresponding depth maps of the Dancer
sequence from Nokia Research.
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T2T D2T DT2T

PSNR 26.1 PSNR 27.1 PSNR 29.3

Figure 3.17: Estimated forward (top) and backward (middle) flow fields, along
with the interpolation result (bottom).
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3.5 Image interpolation using partially decoded
frames

In this section we will consider the refinement of motion estimation and inter-
polation in a distributed video coding setup. We use transform domain coding
with a discrete cosine transform (DCT) like transform. In this setup every de-
coded bit plane will produce a�ne constraints on the frame to be decoded, that
can be used to refine the estimate of the frame to be decoded. This chapter is
based on methods developed for the codec described in Luong et al. (2013).

3.5.1 Initial frame interpolation

For the initial interpolation we are in the setting of Section 3.3. We have two
images It�1 and It+1. The interpolation is done following Rakêt et al. (2012b),
where the forward, backward and symmetric interpolations presented in Section
3.3 are computed, and the final result is taken to be the average of the three.

Figure 3.18: Frames 84, 85, and 86 of the Soccer sequence

PSNR 20.4 PSNR 20.3 PSNR 21.5 PSNR 21.2

Figure 3.19: Forward, backward, and symmetric interpolation results and aver-
age, for frame 84 of the Soccer sequence.

A specialized coarse-to-fine pyramidal implementation of the above algo-
rithm is used. Following Algorithm 2.1, we have to following modifications
to the standard settings: On each level we perform wmax = 30 warps using
imax = 10 iterations of the BM algorithm of Goldlücke et al. (2012). In order to
improve interpolation quality, ⇢ has been weighted by the gradient magnitude
krI1(x+v0)+0.01k (slightly shifted to avoid division by 0) in the minimization
of (2.4) (Zimmer et al. 2011), which will allow for more even step sizes in the
estimation. With this modification, � was set to 3.

All in all this produces a more robust flow for interpolation, and combining
the symmetric flow with the warped forward and backward flows, we propose
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to do the interpolation as follows

I1/2(x) =
1

6
(I1(x+ v

1/2
f (x)) + I1(x� v

1/2
b (x)) + I1(x+ vs(x))

+ I0(x� v

1/2
f (x)) + I0(x+ v

1/2
b (x)) + I0(x� vs(x))),

(3.8)

so the interpolation is the average of the two surrounded frames warped to the
center using the three di↵erent flows.

We will evaluate (3.8) which we will denote 3OF on the test sequences (QCIF,
15 fps) Coastguard QP=26, Foreman QP=25, Hall QP=24 and Soccer QP=25,
where we interpolate every other frame and compare to the overlapped block
motion compensation (OBMC) method from Huang & Forchhammer (2005) and
the TV-L1 optical flow (OF) method from Huang et al. (2011). The results are
found in Table 3.3, and it can be seen that the proposed method outperforms
OBMC and OF on all sequence, with an average increase in PSNR of 1.26 dB
over OBMC and 2.25 dB over OF.

Table 3.3: Average PSNR across the 74 interpolated frames for the four test
sequences.

Sequence OBMC OF 3OF
Coastguard 31.83 30.92 32.71
Foreman 29.26 29.28 30.19
Hall 36.46 32.28 37.25

Soccer 21.30 22.43 23.75

With initial estimates produced by 3OF we may decode the so-called Wyner-
Ziv frames. Decoding is done one bit plane at the time, going from most sig-
nificant to least significant bit in transform domain. In the next section it is
considered how one may link this information to the frame to be decoded in
pixel domain.

3.5.2 Upsampling images from DCT coe�cients

The frames to be decoded have been transformed using the following DCT-like
transform on every 4⇥ 4 image patch I

DCT0(I) = (CIC

>)�E,

where � denote pointwise multiplication, and

C =

0
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1 1 1 1
2 1 �1 �2
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We see that the DCT at a single point (i, j) can be written as

EijCi ⌦Cj

a

I

v

44



where I

v is the vectorization

I

v =

0

BBB@

I00

I10
...

I33

1

CCCA
.

Decoding is done bit plane wise for the image in question, and gives a set
of intervals d1 ± c1, . . . , dk ± ck (with corresponding DCT vectors a1, . . . ,ak)
wherein the DCT coe�cients lie. To reconstruct a 4⇥ 4 image patch I we can
use the fact that the vectorized patch should fulfill

AI

v 2 [d1 � c1, d1 + c1]⇥ · · ·⇥ [dk � ck, dk + ck]
D

A =

0

B@
a1
...
ak

1

CA .

A simple solution for reconstructing a 4⇥ 4 patch consists in ignoring the inter-
vals, and just focusing on the midpoints, then choosing the vectorized patch eI

v

as the solution to

A

e
I

v
=

0

B@
d1
...
dk

1

CA

with the least Euclidian norm, which is simply given as the Moore-Penrose
pseudoinverse of the midpoint vector

e
I

v
= A

†

0

B@
d1
...
dk

1

CA .

Example 3.5.1. Given c1 = DCT0(I)(0, 0), A = 1
4

�
1 · · · 1

�
, and

A

† = 1
4

�
1 · · · 1

�>
,

which means that eI is a constant block with values d1
4 , in other words we fill in

the patch in pixel domain by its average. �
Example 3.5.2. Given an estimate I

v subject to the constraint specified by a
vector a, we can first check if the estimate is admissible by checking if

|a>
I

v � d|  c.

If so, we will not do anything. When this is not the case we can project the
solution onto the planar strip given by the constraint.

Assuming that
a

>
I

v � d > c,

we want to compute the orthogonal projection of Iv onto

{x : a>
x� d = c},

which is equivalent to computing the projection of Iv � (d + c) onto the line
given by a plus d+ c, which is

a

>(Iv � (d+ c))

a

>
a

a+ d+ c.

�
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Upsampling using global regularization Consider now the case of an en-
tire image I, with the 4⇥4 patches I1, . . . , In, and corresponding DCT intervals
D1, . . . , Dn. We can consider the problem of reconstructing all patches subject
to a global roughness penalty. This means that the reconstructed patches in-
teract to give a result that is regular across the entire image. In addition the
regularization will make the problem well-posed. A choice of regularization
that is both simple and powerful is total variation. The problem may then be
formulated as wanting to recover I as the minimizer of

Z

T
krI(x)| dx such that AIi 2 Di for all i. (3.9)

Direct minimization of this problem is not feasible, and instead we propose the
following procedure. Starting out from an initial solution, we find a nearby
solution with better regularity properties, using the algorithm of Chambolle
(2004). All 4⇥ 4 blocks of the resulting regularized solution are projected onto
the set of admissible solutions, and using this new initial solution we repeat the
algorithm. In short, the algorithm is simply an iterative minimization of the
energy

E(I) = �

Z
kI(x)� I

0(x)k2 dx+

Z
krI(x)| dx (3.10)

where I 0 is the orthogonal projection of a current solution onto the set of admis-
sible solutions given by the constraints AIi 2 Di. The orthogonal projection is
computed using an alternating projections method with the result from Example
3.5.2

As previously mentioned, the decoding of a frame is done from most signifi-
cant bit plane to least significant bit plane. In the following we will denote the
corresponding constraints on the DCT coe�cients of the decoded bands by DC,
AC1, AC2, etc., and use data from decoding of the codec presented in Luong
et al. (2013).

Figure 3.20 shows an example of how to convert the DC to an estimate of the
unknown image in pixel domain. The particular structure of the DC allows for
easy manipulation to create an initial estimate of the frame in question. Using
only the midpoint of the given intervals, the solution with least Euclidian norm
(Example 3.5.1) is a blocky nearest-neighbor-like interpolation of the image. A
smoother estimate may be found by using bicubic interpolation on the same
mid-points, which will add some global regularity to the estimate, and finally
the quality of this solution may in general be improved by projecting the bicubic
solution onto to the space of admissible solutions given by the known coe�cients.
This final estimate will be used as the initial guess when minimizing (3.10).

Figure 3.21 shows the results of the presented algorithm with an increasing
number of decoded bands. For the algorithm we have iterated (3.10) 5000 times
with � = 50, and the projection onto the set of admissible solutions is done
by 20 iterations of alternating projection of all individual constraints. While
the characteristics of total total variation smoothing are clearly visible, we see
that already at four decoded bands (out of 16 in total), the estimates look quite
decent.
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Ground truth Upscaled DC

midpoint

Bicubic

upscaling

Projected

bicubic upscaling

PSNR 24.4 PSNR 24.5 PSNR 25.7

Figure 3.20: Frame 81 of the Soccer sequence and reconstruction of the frame
based on the DC.

DC AC1 AC2 AC3

PSNR 26.3 PSNR 28.2 PSNR 30.4 PSNR 31.1

Figure 3.21: Total variation upscaling of frame 81 of the Soccer sequence using
an increasing number of decoded bands.

3.5.3 Motion reestimation and interpolation

The upsampling method described above provides a link, that allows one to
use the information contained in decoded bands in transform domain, to full
resolution images in pixel domain. This new information is di↵erent from the
depth maps used in the interpolation process in Section 3.4, in the sense that it
is just an overly smooth estimate of the frame to be interpolated. The goal is
then to fill in the fine details from the outer frame onto this smooth estimate.

It turns out that this detail mapping may be done remarkably well by using a
slightly modified TV-L1 optical flow algorithm. With an estimate of the frame
in question Ît produced by the total variation minimization proposed in the
previous section, motion can be estimated directly between the estimate and
the corresponding key frames It�1, It+1. This reduction of the temporal gap
may increase the accuracy in the motion estimation, but more importantly, it
eliminates the need for the assumption that motion is linear in-between key
frames. The main di�culty is that the estimated frame may be a very coarse
approximation of the real solution, in particular when only the DC coe�cients
have been decoded. To address this, we will use a specialized smoothing strategy
prior to downsampling images in the image pyramid. At pyramid level ` with
downsampling factor � the Gaussian smoothing compared to the full resolution
images has standard deviation 0.5 · ��max(`,`0) where `

0 is some given level.
This means that from level `0 and down we will have a fixed total standard
deviation compared to the full resolution images, and thus smooth out the finer
details at these levels. This smoothing makes it possible to properly estimate
motion to the generated estimates. Apart from this specialized downsampling
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and smoothing strategy, we use Algorithm 2.1 with imax = 15 and otherwise
standard parameters. Table 3.4 gives the levels `

0 and � values used for the
di↵erent number of decoded bands.

Figure 3.22 shows the results of this procedure, where details from the key
frames are mapped onto the estimates from Figure 3.21.

Table 3.4: Paramaters used for reestimation with varying number of decoded
bands.

Highest decoded `

0
�

DC 25 15
AC1 15 15
AC2 15 40
AC3 15 60

DC AC1 AC2 AC3

PSNR 27.7 PSNR 30.2 PSNR 32.2 PSNR 32.6

Figure 3.22: Details mapped to the estimates from Figure 3.21 using optical
flow from surrounding frames.

The average PSNR values for the four test sequences can be found in Table
3.5. We see that results after reestimation are significantly better for the dy-
namic sequences Foreman and Soccer, while the initial estimates provide better
results for the almost static Coastguard and Hall sequences. The parameters
in Table 3.4 have been chosen to achieve this, since a proper multi-hypothesis
decoding scheme (Huang et al. 2011) may be used to fuse the best parts of
di↵erent estimates to a single superior estimate. Dynamic sequences generally
present a problem in distributed video coding with respect to side information
generation (Huang et al. 2011, Rakêt et al. 2012b), which means that improve-
ments as those seen in Table 3.5 will in the end be the ones that deliver the
main bitrate saving in the coding process, compared to conventional methods.

Table 3.5: Average PSNR across the 74 interpolated frames for the four test
sequences.

Sequence Initial DC AC1 AC2 AC3
Coastguard 32.71 27.74 27.78 33.01 34.02
Foreman 30.19 33.74 34.69 36.04 36.61
Hall 37.25 31.43 33.19 36.22 36.67

Soccer 23.75 29.96 31.49 34.23 34.93
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Chapter 4

Conclusions and future
directions

This thesis has described the duality based TV-L1 optical flow method, and
variations hereof. Theoretical work on generalizing the original formulation of
Zach et al. (2007) has been presented, and a highly optimized algorithmic setup
was described. In addition five novel applications were given. We considered
registration of medical images and 2D chromatograms, as well as three examples
of frame interpolation in video sequences.

It has been demonstrated that the TV-L1 optical flow algorithm is able to
produce good results on benchmark data, and that the robustness of the for-
mulation allows it to be used successfully in a wide range of applications. This
robustness is a very important feature of the algorithm, as small benchmark
datasets has a tendency to pull the development of algorithms toward algo-
rithms that work mainly on the specific examples available (Austvoll 2005).
While the Middlebury benchmark has been built as a response to optical flow
algorithms typically only being evaluated on (and overfitted to) the Yosemite
and Tree sequences, the examples available are hardly realistic situations, and
good performance on this benchmark does not guarantee good performance in
other applications. Recently new benchmark data for optical flow evaluation
has been presented (Geiger et al. 2012, Butler et al. 2012), and hopefully these
data will help giving rise to new robust optical flow methods.

The most obvious direction of future research is to properly investigate the
di↵erent extensions presented in Chapter 2, and consider how they interact.
Then use this knowledge to build an algorithm with even better performance
than what has been presented here.

Another question that has not been considered here is estimation of param-
eters. Very few successful methods for doing this exist. Zimmer et al. (2011)
proposed the so-called optimal prediction principle, where multiple flows with
di↵erent � parameters were estimated, and the one with the best predictive
qualities (with respect to data fit in a subsequent frame) was chosen. A sim-
ilar idea was considered in Rakêt (2012) to give a locally varying field of �

values. While these methods have been demonstrated to work well, they are
somewhat heuristic. A general and e�cient parameter estimation framework
would greatly benefit optical flow estimation, as this would remove the need to
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tune parameters for specific applications.
An additional point of future investigations is the symmetric interpolation

results presented in Section 3.3. The interpolation quality may of course be
improved by using a symmetric data term with a more advanced optical flow
method, but this is perhaps not the most exciting research direction. If the goal
is to improve viewing experience, a spatial regularization of the interpolated
frames could probably improve the perceived quality. Spatial regularization
may be done by means of total variation (Keller et al. 2010, Werlberger et al.
2011) or by edge enhancing di↵usion (Weickert 1994). The latter has been
shown to have very good interpolation properties in other areas, and has been
successfully used in image compression (Galić et al. 2008) as well as motion
compensated deinterlacing (Ghodstinat et al. 2009). A proper generalization
to frame interpolation would likely produce very good and robust results. To
improve reconstruction quality one could in addition do occlusion reasoning
and selectively interpolate from the non-occluded frame, or compute motion
trajectories over several frames (Volz et al. 2011) and use this information for
interpolation.

Finally, an important point of future research is the approach to the vector
valued problem described in Section 3.2, where the coupling of channels is moved
to the regularization term, instead of the data term. These uncoupled data
terms are somewhat similar to the robustification of Bruhn et al. (2005), who
decomposed the original coupling of brightness and gradient suggested in Brox
et al. (2004), but kept as a strict requirement that the flows stayed the same
(as was the case with brightness and depth in (3.7)). This decoupling was taken
further to decouple HSV color channels in Zimmer et al. (2011). It will be
interesting to consider how the proposed method compares to usual data term
coupling, in particular if it will add any robustness to the estimation, since it
allows for a much simpler and more e�cient solution than the one described in
Proposition 2.1.4.
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Steinbrücker, F., Pock, T. & Cremers, D. (2009a), Large displacement optical
flow computation without warping, in ‘Computer Vision, 2009 IEEE 12th
International Conference on’, pp. 1609 –1614.
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