

F A C U L T Y O F S C I E N C E

U N I V E R S I T Y O F C O P E N H A G E N

Thesis for the Master degree in Statistics
Department of Mathematical Sciences

Lars Lau Rakêt

2D Functional Data Analysis
with applications to image analysis

Supervisors: Bo Markussen & Helle Sørensen

Hand in date: July 27, 2010

Note

This document is a slightly revised version of the original thesis. A number of minor typos have

been corrected, and references have been updated. Note in particular that the accompanying R

package is no longer available. The main scientific contributions of this thesis can also be found in

improved form in the paper Rakêt & Markussen (2014).

Lars Lau Rakêt

May 5, 2013

Abstract

This thesis considers functional data analysis on two dimensional rectangular domains. The

central problem of the work is that of regularization or smoothing, where a roughness measure is

introduced as a penalizing term in the likelihood function. In certain cases a corresponding Bayesian

model producing equivalent estimates can be specified, and this is the principal model considered

in this thesis. The estimates in this model can be computed explicitly, but requires calculation

of the Green’s function corresponding to the roughness measure. The main results of the thesis

are in Chapter 5 where a number of approximations to the problem are introduced. The idea

behind the approximations is to move the calculations (time intensive matrix operations) to the

functional domain. These approximations make it possible to do smoothing of large datasets (e.g.

several million observations.) The approximation results are new, and comes as a generalization of

equivalent one-dimensional approximations by Markussen (2013). Finally the model and results are

applied on 2D electrophoresis images. In connection with the thesis an R package (R Core Team

2013) named laplacesmooth has been developed, which implements most methods presented in

this thesis.

i

Preface

This text and the R software package laplacesmooth constitute my thesis for the MSc (Cand.Scient)
degree in Statistics. The thesis has been written in the period February-July under supervision of Bo
Markussen and Helle Sørensen, and handed in July 27, 2010 at Department of Mathematical Sciences,
University of Copenhagen.
The thesis is mainly based on Markussen (2013), generalizing a number of results to two dimensions.

Structure

Chapter 1 introduces and motivates the penalized likelihood smoothing problem in two dimensions.
Then a Bayesian model with a Gaussian prior is introduces, and it is shown that this model produces
equivalent estimates to those of the penalized likelihood approach.

In Chapter 2 rigorous definitions of Gaussian fields and Green’s functions are given, and some results
linking covariance functions to continuity and smoothness of Gaussian fields are given. Finally the
standard reproducing kernel Hilbert space approach to smoothing using generalized splines is covered.

Chapter 3 deals with the actual calculations in the model introduced in Chapter 1. The Laplace operator
is covered first and an interpretation of the meaning of using the Laplace operator for smoothing is
given. Next a number of Green’s functions related to the Laplacian are found. The most important is
the Green’s function for the iterated Laplacian (��)`, which is the main smoothing operator throughout
the thesis. At the end of the chapter the proposed model is reviewed in relation to other models in the
literature.

In Chapter 4 three di↵erent simulated data examples are considered, and methods from the previous
chapter are used.

Chapter 5 holds the main results of this thesis. Here the computationally expensive matrix computations
are approximated by continuous counterparts, that are both pleasing from the perspective that the
data is only a discrete sample of a continuous function, and because most of the operations can be
implemented to run in constant or linear time as opposed e.g. cubic. The approximations are inspired
by the one-dimensional counterparts coined of Markussen (2013).

Chapter 6 is as the title says, “Chapter 5 in practice”. Closed formulae (i.e. convergent infinite double
series) for the approximations in the previous chapter are calculated, the quality of the approximations
is studied and one of the data examples from Chapter 4 is revisited in the approximated setting.

In Chapter 7 smoothing is performed on 2D electrophoresis images using the approximations, di↵erent
kinds of model control is done, and a likelihood ratio test for testing wether a spot on the image is a
real protein spot or noise is introduced.

The final chapter reviews possibilities and future directions.

R package

The thesis has a companion R package called laplacesmooth. The package is documented in the
standard R help system, where examples on use of all functions can be found as well. A number of
listings containing examples of use of the package is also supplied in this text.

Thanks

First and foremost I would like to thank Bo Markussen for coming up with the subject of the thesis, for
his help and guidance throughout the writing process, and for patiently answering all my questions. I
would also like to thank Helle Sørensen for being my internal supervisor and for good advice on thesis
writing. Finally I would like to thank my dearest Line Skotte for thorough proofreading and for bringing
me along to Berkeley during the writing of this thesis.

ii

CONTENTS

Contents iii

1 Introduction 1

1.1 Motivation . 1
1.2 Model . 3

2 Gaussian fields, Green’s functions and splines 5

2.1 Gaussian fields . 5
2.2 Green’s functions . 7
2.3 Generalized splines . 7

3 Calculations and examples 11

3.1 The Laplace operator . 12
3.2 Green’s functions in practice . 13
3.3 Relation to other work . 24

4 Data examples 27

5 Approximations 39

5.1 Approximations of matrix computations . 39

6 Chapter 5 in practice 45

7 Applications to 2D electrophoresis images 59

8 Future directions 67

Bibliography 69

iii

chapter 1

INTRODUCTION

This thesis will present methods for statistical inference for image data viewed as two-dimensional
functional data. The methods are based on the one-dimensional approach presented in Markussen
(2013). Since these methods are not standard, this chapter will work as an initial motivation, that
introduces the problem, corresponding statistical models, and the resulting estimators.

1.1 Motivation

Consider the function ✓ : [0, 1] ⇥ [0, 1] ! R, which we will refer to as an image, and the di↵erential
operator K of order k that can be used to measure the roughness of ✓ by the integral of squares

ˆ
1

0

ˆ
1

0

|K ✓(s, t)|2 ds dt.

The methods that will be presented will mainly focus on the squared operator L = K †K which we
can take to be defined on C2k([0, 1]⇥ [0, 1],R). The roughness measure can be expressed in terms of L :

ˆ
1

0

ˆ
1

0

|K ✓(s, t)|2 ds dt = hK ✓,K ✓i = h✓,K †K ✓i = h✓,L ✓i.

L is obviously positive semidefinite, but not neccesaraly positive definite on the space on which it is
defined. We will need that L is positive definite, and therefore we will restrict the choices of ✓ to some
subspace H such that this is the case. Let us consider an example.

Example 1.1. Let K = ↵@
s

+ I where ↵ 2 R. @
s

denotes the partial di↵erential operator with respect
to the first coordinate and I is the identity operator. Expanding the inner integral of the roughness
measure, one gets that

ˆ
1

0

|(↵@
s

+ I) ✓(s, t)|2 ds =

ˆ
1

0

(↵@
s

✓(s, t))2 ds+

ˆ
1

0

✓(s, t)2 ds+ 2

ˆ
1

0

✓(s, t)↵@
s

✓(s, t) ds.

Applying integration by parts on the first integral it is obtained that

ˆ
1

0

(↵@
s

✓(s, t))2 ds = ↵2

h

✓(s, t)@
s

✓(s, t)
i

1

0

�
ˆ

1

0

✓(s, t)↵2@2

s

✓(s, t) ds,

and so, if the boundary condition
✓(0, t) = ✓(1, t) = 0

is imposed for all t 2 [0, 1], the roughness measure is given by

ˆ
1

0

ˆ
1

0

|K ✓(s, t)|2 ds dt =
ˆ

1

0

ˆ
1

0

✓(s, t)(�↵2@2

s

+ ↵@
s

+ I)✓(s, t) ds dt.

I.e. for ✓ 2 H where H is given by

H =
n

✓ 2 C2k([0, 1]⇥ [0, 1],R)
�

�

�

✓(0, t) = ✓(1, t) = 0
o

,

the squared operator K †K is given by L = �↵2@2

s

+ ↵@
s

+ I. It is easily verified that L is positive
definite on H . �

1

2 CHAPTER 1. INTRODUCTION

We have only introduced a single di↵erential operator for measuring roughness, but if we have n di↵er-
ential operators K

1

, . . . ,K
n

, each measuring a di↵erent aspect of roughness, we can put

L =
n

X

i=1

K †
i

K
i

,

which, as long as H is chosen such that L is positive definite, will work just as seen until now.

Now consider the simple statistical model of having noisy observations y
ij

of an image in the grid (s
i

, t
j

)
ij

with i = 1, . . . , n
1

and j = 1, . . . , n
2

, and where the noise terms "
ij

are assumed to be independent and
N (0,�2)-distributed:

y
ij

= ✓(s
i

, t
j

) + "
ij

, ✓ 2 H . (1.1)

It is problematic to infer ✓ in this model as H will typically be a very versatile class of functions, and
thus overfitting problems arise with standard likelihood methods. One way to handle this problem is
to introduce a penalty in the form of the roughness measure to the negative log-likelihood. This gives
the negative penalized log-likelihood `L

y

:

`L
y

(✓,�2,�) =
n
1

n
2

2
log �2 +

1

2�2

n1
X

i=1

n2
X

j=1

(y
ij

� ✓(s
i

, t
j

))2 + �

ˆ
1

0

ˆ
1

0

✓(s, t)L ✓(s, t) ds dt,

where � is a smoothing parameter.

Before we move on to the estimation of ✓, the next example will address how L can be chosen.

Example 1.2. Suppose that ✓(s, t) is the temperature of a one-dimensional metal string at the point
s to time t, with initial condition that the entire string has zero temperature at the beginning of the
measurements, and the condition that the endpoints are kept at zero temperature at all times:

✓(s, 0) = ✓(0, t) = ✓(1, t) = 0.

If we observe ✓ in the grid (s
i

, t
j

)
i,j

with independent standard normal distributed errors, we are in a
setup corresponding to the model (1.1). We are interested in estimating the evolution of the distribution
of heat over time, and perhaps also in estimating the partial derivatives. The question is then how L
should be chosen. It is known from physics that the distribution of heat in metal is usually described
well by the solution to the heat equation

@
t

✓(s, t)� ↵2@2

s

✓(s, t) = 0,

where ↵2 is a constant known as the thermal di↵usivity. This way K = @
t

�↵2@2

s

corresponds to giving
a penalty to all functions that do not satisfy the heat equation.

The above approach can be used to easily choose the di↵erential operator L when we are observing
structures, that are (approximately) governed by a di↵erential equation. If such information is not
available, L will typically be chosen to be a sum of squared partial derivatives up to some order k,
which will produce smoother estimates up to the order k. �

Let us now consider the problem of estimating ✓ using the penalized likelihood function. It should be
noted that this problem is only interesting as long as there is no function ✓ 2 H with L ✓ = 0 which
also produces a perfect fit. Denote by

�

�✓
`L
y

(✓,�2,�)

the functional derivative of the negative penalized log-likelihood. As `L
y

(✓,�2,�) is a strictly convex

functional of ✓ 2 H , the unique minimum is the root of �

�✓

`L
y

(✓,�2,�). Remembering that L is linear

1.2. MODEL 3

and self-adjoint, it is easily derived that

�

�✓(s, t)
`L
y

(✓(s, t),�2,�) =
1

�2

n1
X

i=1

n2
X

j=1

(✓(s
i

, t
j

)� y
ij

)�
(si,tj)

(s, t) + 2�L ✓(s, t), (1.2)

where �
(si,tj)

is the 2-dimensional Dirac delta function. Now assume that L has Green’s function G,
i.e.

L �1f =

ˆ
1

0

ˆ
1

0

G(· , (v, w))f(v, w) dv dw.

Considering

L �1�
(s,t)

=

ˆ
1

0

ˆ
1

0

G(· , (v, w)) �
(s,t)

(v, w) dv dw = G(· , (s, t))

it is obtained that
L G(· , (s, t)) = �

(s,t)

,

and with this in mind it is easily verified that

⇢

1

2�
G(· , (s

k

, t
l

))

�

(k,l)

⇢

1

2�
G((s

i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

��1

(i,j),(k,l)

y, (1.3)

where y = {y
ij

}
(i,j)

, is a root of (1.2), and therefore the penalized likelihood estimate of ✓.

In the next section the problem of estimating the image will be presented in an alternative setup, where
it turns out that the minimum mean square error estimator is identical to the penalized maximum
likelihood estimator (1.3).

1.2 Model

If we consider the same setup as in the previous section, i.e. noisy observations y = {y
ij

}
(i,j)

of an
image and some di↵erential operator L , invertible on a space H , which can be used for measuring the
roughness of the image, one could propose the model

y
ij

= x(s
i

, t
j

) + "
ij

(1.4)

where the "
ij

’s are independent and identically N (0,�2)-distributed random variables and x is a Gaus-
sian process (or Gaussian random field), independent of the "

ij

’s, with zero mean, a property that we
will refer to as centeredness, and covariance function ⌧2G where G still denotes the Green’s function
corresponding to L .1

In this model x plays the role of the image ✓ from the model (1.1), but the two models seem very
di↵erent. In (1.1) ✓ is a smooth surface that is continuously di↵erentiale up to an order 2k, whereas in
(1.4) the image-component x need not even be di↵erentiable. Also it seems unlikely that a Gaussian
process with drift 0 should exhibit all the traits of a particular image ✓. Undeterred by these facts, we
will continue the analysis of the model (1.4), where x is thought of as a prior for ✓ in a Bayesian point
of view.

With a slightly generalized notation, we have that

✓

y
x

◆

⇠ N

0

0

!

,

{⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

}
(i,j),(k,l)

{⌧2G((s
i

, t
j

), ·) }
(i,j)

{⌧2G(· , (s
k

, t
l

))}
(k,l)

⌧2G

!!

.

1Note that since L is positive definite, G is also positive definite and thus a valid covariance function as long as G
does not contain any singularities.

4 CHAPTER 1. INTRODUCTION

It is well known that the unique maximum a posteriori estimate of x is given by E[x | y], which is a
quantity that is easily identified from standard results of multivariate analysis.

E[x | y] =
n

⌧2G(· , (s
k

, t
l

))
o

(k,l)

n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o�1

(i,j),(k,l)

y. (1.5)

Furthermore we find that

Var[x | y] = ⌧2G �
n

⌧2G(· , (s
k

, t
l

))
o

(k,l)

n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o�1

(i,j),(k,l)

·
n

⌧2G((s
i

, t
j

), ·)
o

(i,j)

.

Interestingly the Bayes estimator E[x | y] corresponds exactly to (1.3) with ⌧2 = 1/2�, which means that
the Bayesian a priori model (1.4) will produce estimates identical to those of the penalized likelihood
approach if the smoothing parameter � and the variance component ⌧2 are related by the previously
mentioned equation.

It is possible to write up the negative log-likelihood:

`
y

(�2, ⌧2) =
1

2
log det⌃+

1

2

n

y
ij

o>

(i,j)

⌃�1

n

y
ij

o

(i,j)

=
1

2
log det⌃+

1

2�2

n

y
ij

o>

(i,j)

n

y
ij

� E [x(s
i

, t
j

) | y]
o

(i,j)

, (1.6)

where
⌃ =

n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o

(i,j),(k,l)

.

In principle this allows for maximum likelihood estimation of �2 and ⌧2, but the matrix inversion and
determinant computation will restrict the cases where this is possible, either because of the involved
numerics or because of the computation time, to sparsely observed images.

The use of maximum likelihood estimation can also be problematic, because the model (1.4) may be
in clear violation with some structure of the image, as mentioned earlier. In that case, even though
the penalized likelihood and Bayes approach yields structurally identical estimates, the estimation of
⌧2 may give a very di↵erent result compared to the estimate of 1/2� by e.g. generalized cross-validation
(Craven & Wahba 1978) or a similar technique, and thus give di↵erent estimates of the image.

An easy way to deal with the potential problems in applying this model is to apply it only to the
residual image, where one has already modelled the expectation structure. We will propose to take the
approach of Markussen (2013), where the expectation structure is modeled by low-dimensional crude
representations of the image. This approach can be aided by standard algorithms developed in image
analysis. This problem will be revisited in Chapter 7, and for now the model will be explored in its
purity.

chapter 2

GAUSSIAN FIELDS, GREEN’S FUNCTIONS AND SPLINES

In this chapter some relevant theory about Gaussian random fields on [0, 1] ⇥ [0, 1] will be developed.
After this some details on Green’s functions will be mentioned. In the following chapters these two
subjects will be connected by specifying properties of a centered Gaussian random field x with covariance
given by the Green’s function G corresponding to some di↵erential operator L . Finally the model (1.1)
will be revisited once more with a specific roughness penalty, and the usual thin plate spline solution,
which is also connected to Green’s functions, will be derived.

2.1 Gaussian fields

Let (⌦,F , P) be a complete probability space. A measurable mapping x : ⌦ ! R[0,1]⇥[0,1] is called
a Gaussian random field or simply a Gaussian field, if its finite-dimensional distributions given by
the vectors of the form (x(s

1

, t
1

), . . . , x(s
n1 , tn2)) are multivariate Gaussian for all n

1

, n
2

2 N and all
s
1

, . . . , s
n1 , t1, . . . , tn2 2 [0, 1]. We will assume that all random fields we encounter are centered, i.e.

E[x(s, t)] = 0

and have covariance function C:

C((s, t), (v, w)) = E [x(s, t)x(v, w)] .

With this definition, Kolmogorov’s consistency theorem will guarantee that there exists a Gaussian field
on [0, 1]⇥ [0, 1] for any positive definite covariance function C.

Consider the model (1.4). As previously mentioned, there might be problems in using x as a prior for
✓ because x might have properties that do not match those of ✓ at all. Much of this section will be
devoted to finding su�cient conditions for Gaussian fields to be bounded, continuous and di↵erentiable,
so that we are able to control the “look” of x.

Let us start with boundedness and continuity. Since we are working on a compact space, continuity
will imply boundedness. We will therefore have to find conditions such that

P

✓

lim
(v,w)!(s,t)

|x(s, t)� x(v, w)| = 0, 8s, t 2 [0, 1]

◆

= 1,

which we will take as our definition of continuity of a Gaussian process x. The following theorem gives
a su�cient condition for continuous sample paths.

Theorem 2.1. A centered Gaussian field x is continuous if for some positive c and ↵, ⌘ > 0

C((s, t), (s, t)) + C((v, w), (v, w))� 2C((s, t), (v, w)) c

| log k(s, t)� (v, w)k|1+↵

(2.1)

for all s, t with k(s, t)� (v, w)k < ⌘.

Proof. This is a special case of Theorem 1.4.1 in Adler & Taylor (2007), where it has been used that

E[|x(s, t)� x(v, w)|2] = C((s, t), (s, t)) + C((v, w), (v, w))� 2C((s, t), (v, w)).

5

6 CHAPTER 2. GAUSSIAN FIELDS, GREEN’S FUNCTIONS AND SPLINES

What Theorem 2.1 tells us is that practically any Gaussian field with continuous covariance function is
itself continuous. Consider the function

f(t) =
1

(� log t)1+↵

, t 2 (0, 1).

We see that
lim
t!0

f(t) = 0 and lim
t!1

f(t) = 1,

and
d

dt
f(t) =

1 + ↵

t(� log(t))2+↵

! 1 as t ! 0.

For s
n

! s and t
n

! t it seems that one should make an e↵ort to find a continuous covariance function
C where C((s, t), (s

n

, t
n

)) will converge to C((s, t), (s, t)) so slowly that (2.1) will not be met.

Now let us move to the question of di↵erentiability. Define the Gaussian fields x1

h

and x2

h

by

x1

h

(s, t) =
x (s+ h, t)� x (s, t)

h
or x2

h

(s, t) =
x (s, t+ h)� x (s, t)

h
.

We say that x has L2 partial derivative at (s, t) in respectively the s or t-directon if

@
L2

@s
x(s, t) = lim

h!0

x1

h

(s, t) and
@
L2

@t
x(s, t) = lim

h!0

x2

h

(s, t)

exist in L2. We call x L2-di↵erentiable if both partial derivatives exist in L2 for all (s, t) 2 [0, 1]⇥ [0, 1].
Since we are working with centered Gaussian fields, L2 results can easily be expressed in terms of the
covariance function C. The next theorem considers the question of continuously di↵erentiable sample
paths.

Theorem 2.2. A centered Gaussian field x with covariance function C for which

@2

@s@v
C((s, t), (v, w)) and

@2

@t@w
C((s, t), (v, w))

exists for all ((s, t), (v, w)), is continuously di↵erentiable with probability one if there exists a positive
c and ⇢, �, h

0

> 0 such that for ↵
1

,↵
2

, ⌘ > 0

@2

@s@v
(C((s, t), (s, t)) + C((v, w), (v, w))� 2C((s, t), (v, w))) c

| log k(s, t)� (v, w)k|1+↵1

and

@2

@t@w
(C((s, t), (s, t)) + C((v, w), (v, w))� 2C((s, t), (v, w))) c

| log k(s, t)� (v, w)k|1+↵2

for all (s, t), (v, w) with k(s, t)� (v, w)k < ⌘.

Proof. From the first assumption on C we get that x is L2-di↵erentiable. Since the characteristic
function of a multivariate Gaussian with zero-mean and covariance C

n

is

�(✓) = exp

✓

�✓>C
n

✓

2

◆

,

it follows from Lévy’s continuity theorem that if (X
n

)
n�1

is an L2 convergent sequence of multivariate,
zero-mean Gaussians with covariance C

n

, then the limit X must also be Gaussian with covariance
C⇤ = lim

n

C
n

. From this fact it is easily seen that @

@s

x(s, t) must be centered Gaussian with covariance
@

2

@s@v

C((s, t), (v, w)) and @

@t

x(s, t) is centered Gaussian with covariance @

2

@t@w

C((s, t), (v, w)). The result
now follows by using Theorem 2.1 on these two processes.

2.2. GREEN’S FUNCTIONS 7

2.2 Green’s functions

Green’s functions have already been introduced in Chapter 1 as integral kernels G that determine the
inverse of the di↵erential operator L

L �1f(s, t) =

ˆ
1

0

ˆ
1

0

G((s, t), (v, w))f(v, w) dv dw. (2.2)

It turns out that the proper definition of G is as the distribution on the space consisting of the infinitely
di↵erentiable functions in H (the space on which L is defined) for which the identity

L G((s, t), (v, w)) = �
(s,t)

(v, w), (2.3)

holds. This definition may require some fiddling where functions in H are thought of as though they
were continuously embedded in a larger space, e.g. R2 or [�", 1 + "] ⇥ [�", 1 + "] for " > 0, in such
a manner that they have compact support and disappear on the boundary of the larger space, but we
will leave that as unimportant technicalities. It has already been established that the definition from
Chapter 1 implies (2.3). If on the other hand G is a distribution for which (2.3) holds and f is an
infinitely di↵erentiable function

L hG((s, t), ·), fi = hL G((s, t), ·), fi = h�
(s,t)

, fi = f(s, t),

so the new definition makes sense. Whenever possible we will pretend that G is a usual function.

2.3 Generalized splines

Consider the problem of minimizing

1

2�2

n1
X

i=1

n2
X

j=1

(✓(s
i

, t
j

)� y
ij

)2 + �

ˆ
1

0

ˆ
1

0

k

X

`=1

✓

k

`

◆

|@`

s

@k�`

t

✓(s, t)|2 ds dt (2.4)

over ✓. It turns out that the natural space of functions ✓ for this problem is the generalized Beppo-Levi
space

H = {✓ 2 D 0([0, 1]⇥ [0, 1]) | @`

s

@k�`

t

✓ 2 L
2

for ` = 0, . . . , k}

where D 0([0, 1]⇥ [0, 1]) denotes the space of distributions (extended as above) on [0, 1]⇥ [0, 1] and where
the derivatives are understood in the distributional sense.

Now let {�
⌫

}
1⌫M

denote the M =
�

k+1

2

�

polynomials of total degree less than or equal to k� 1, e.g.
if k = 2 the polynomials are

�
1

(s, t) = 1, �
2

(s, t) = s, and �
3

(s, t) = t.

These polynomials are all infinitely smooth in terms of the roughness penalty (the last term in (2.4).)
We can decompose H as follows

H = H
0

� H
1

where H
0

is the M -dimensional function space with {�
⌫

}
1⌫M

as basis and H
1

consists of what is
left (i.e. H

1

= H /H
0

, or alternatively, the orthogonal complement to H
0

with respect to the inner
product defined below.) Denote by P

1

the orthogonal projection from H onto H
1

. Remember that
(I� P

1

)✓ = 0 if ✓ 2 H
1

. We now equip H with the inner product given by

h✓,#i =
M

X

i=1

(I� P
1

)✓(v
i

, w
i

)(I� P
1

)#(v
i

, w
i

) +
k

X

`=1

✓

k

`

◆ˆ
1

0

ˆ
1

0

@`

s

@k�`

t

✓(s, t) @`

s

@k�`

t

#(s, t) ds dt.

8 CHAPTER 2. GAUSSIAN FIELDS, GREEN’S FUNCTIONS AND SPLINES

The corresponding norm becomes

k✓k2 =
M

X

i=1

((I� P
1

)✓)2(v
i

, w
i

) +
k

X

`=1

✓

k

`

◆ˆ
1

0

ˆ
1

0

�

�@`

s

@k�`

t

✓(s, t)
�

�

2

ds dt.

With this inner product H is a Hilbert space and H
0

? H
1

.

In the following we will need that point evaluation of ✓ is a continuous linear functional. It turns out
that this is the case when k > 1 (this follows from Theorem 1 of Meinguet (1979)) so from now on we
will assume that k > 1. Because point evaluation is continuous, we know by the Riesz representation
theorem that there exists representers ⌘

st

2 H such that

✓(s, t) = h⌘
st

, ✓i.

We will denote the reproducing kernel of H by R:

R((s, t), (s0, t0)) = h⌘
st

, ⌘
s

0
t

0i.

Note that
R((s, t), (s0, t0)) = R

0

((s, t), (s0, t0)) +R
1

((s, t), (s0, t0))

where R
0

= (I � P
1

)R and R
1

= P
1

R are reproducing kernels on H
0

and H
1

respectively with the
obvious choices of inner products.

Using the notation ⌘
ij

= ⌘
sitj the minimization problem can be rewritten as

1

2�2

n1
X

i=1

n2
X

j=1

(h⌘
ij

, ✓i � y
ij

)2 + �kP
1

✓k2. (2.5)

And since H is a Hilbert space we can write

✓ =
n1
X

i=1

n2
X

j=1

c
ij

⇠
ij

+
M

X

⌫=1

d
⌫

�
⌫

+ ⇢

where ⇠
ij

= P
1

⌘
ij

and ⇢ 2 H
1

is perpendicular to all ⇠
ij

’s and �
⌫

’s. Substituting this representation
into (2.5), and using that ⇢ is perpendicular to ⌘

ij

as well as the fact P
1

�
⌫

= 0 for all ⌫ gives the
minimiziation problem

1

2�2

n1
X

i=1

n2
X

j=1

✓

D

⌘
ij

,
n1
X

i

0
=1

n2
X

j

0
=1

c
i

0
j

0⇠
i

0
j

0

E

+
D

⌘
ij

,
M

X

⌫=1

d
⌫

�
⌫

E

� y
ij

◆

2

+ �
�

�

�

n1
X

i=1

n2
X

j=1

c
ij

⇠
ij

+ ⇢
�

�

�

2

. (2.6)

It is seen that only the roughness penalty part depends on ⇢. Since ⇢ is perpendicular to all ⇠
ij

’s it
follows that ⇢ must be 0 in the minimization problem.

Clearly h(I�P
1

)⌘
ij

, ⇠
i

0
j

0i = 0, so h⌘
ij

, ⇠
i

0
j

0i = h⇠
ij

, ⇠
i

0
j

0i, so we can rewrite the minimization even further
as

1

2�2

�

�y � (Hc+ Td)
�

�

2

n1n2
+ �

�

�

�

n1
X

i=1

n2
X

j=1

c
ij

⇠
ij

�

�

�

2

where
H =

n

h⇠
ij

, ⇠
i

0
j

0i
o

(i,j),(i

0
,j

0
)

and T =
n

�
⌫

(s
i

, t
j

)
o

(i,j),⌫

and c = {c
1

, . . . , c
n1n2}, d = {d

1

, . . . , d
M

}. Now since ⇠
ij

(s, t) = R
1

((s
i

, t
j

), (s, t)) we have that

�
�

�

�

n1
X

i=1

n2
X

j=1

c
ij

⇠
ij

�

�

�

2

= �c>Hc,

2.3. GENERALIZED SPLINES 9

and the problem is reduced to

1

2�2

�

�y � (Hc+ Td)
�

�

2

n1n2
+ �c>Hc.

If we assume that all observations do not lie on a straight line, the above problem is solved by setting

c = (H + 2�2�I)�1(I � T (T>(H + 2�2�I)�1T)�1T>(H + 2�2�I)�1)y

and
d = (T>(H + 2�2�I)�1T)�1T>(H + 2�2�I)�1y.

This can be written more elegantly as

(H + 2�2�I))�1c+ Td = y, and T>c = 0.

We have hereby shown that the minimizer of (2.4) is on the form

n1
X

i=1

n2
X

j=1

c
ij

⇠
ij

+
M

X

⌫=1

d
⌫

�
⌫

(2.7)

where the coe↵ecients c, d and polynomials � are known. This function is often refered to as a gener-
alized spline. All there is left is to determine the representers ⇠

ij

. I.e. we need to find a distribution ⇠
ij

such that for ✓ 2 H
1

✓(v, w) = h⇠
vw

, ✓i =
k

X

`=1

✓

k

`

◆ˆ
1

0

ˆ
1

0

@`

s

@k�`

t

⇠
vw

(s, t) @`

s

@k�`

t

✓(s, t) ds dt.

If we impose boundary conditions1 on H such that the boundary terms arising from integration by
parts vanishes, the above integral is equal to

ˆ
1

0

ˆ
1

0

✓(s, t)(@2

s

+ @2

t

)k⇠
vw

(s, t) ds dt.

We get the identity
(@2

s

+ @2

t

)k⇠
vw

(s, t) = �
(v,w)

(s, t).

Comparing this with (2.3) we see that ⇠
ij

must be the Green’s function corresponding to (@2

s

+ @2

t

)k.

1Another alternative which is used in Wahba & Wendelberger (1980) is to extend the area on which we integrate to
R2.

chapter 3

CALCULATIONS AND EXAMPLES

A Green’s function naturally appear in (1.3), but apart from the mathematical tricks that lead us to a
similar expression for the estimate in the model (1.4), one could rightfully ask if Green’s functions give
rise to natural covariance structures for Gaussian processes. The next example is encouraging in the
sense that it shows that the most basic Gaussian fields corresponds to the simplest choices of penalty
di↵erential operator K .

Example 3.1. Markussen (2013) shows that in one dimension the simplest possible penalty (corre-
sponding to setting K equal to the first derivative) produces the covariance of Brownian motion or the
Brownian bridge depending on the boundary conditions. A similar result holds in two dimensions.

The table below holds some of the most basic bivariate Gaussian fields and their corresponding covari-
ance functions as well as some boundary conditions the covariance functions meet.

Process C((s, t), (v, w)) Boundary conditions

Brownian sheet (s ^ v)(t ^ w)

C((0, t), (v, w)) = 0

C((s, 0), (v, w)) = 0

@
s

C((1, t), (v, w)) = 0

@
t

C((s, 1), (v, w)) = 0

Brownian bridge (s ^ v)(t ^ w)� svtw

C((0, t), (v, w)) = 0

C((s, 0), (v, w)) = 0

C((1, 1), (v, w)) = 0

@
s

@2

t

C((1, t), (v, w)) = 0

@2

s

@
t

C((s, 1), (v, w)) = 0

Tied down Brownian bridge (s ^ v � sv)(t ^ w � tw)

C((0, t), (v, w)) = 0

C((1, t), (v, w)) = 0

C((s, 0), (v, w)) = 0

C((s, 1), (v, w)) = 0

Observe that

@
s

(s ^ v) = 1
(0,v)

(s) and @
s

1
(0,v)

(s) = �
v

(s) = �
s

(v).

If we let K = @
s

@
t

, then it holds for any of the boundary conditions in the above table that L =
K †K = @2

s

@2

t

. It is easily obtained that

L (s ^ v)(t ^ w) = L ((s ^ v)(t ^ w)� svtw) = L (s ^ v � sv)(t ^ w � tw) = �
(s,t)

(v, w),

and so each of the covariance functions corresponds to the Green’s function of L on the space of
continuously di↵erentiable functions subject to the boundary conditions given in the above table.

For these fields continuity and di↵erentiability properties are well-known. They are all continuous
and neither are di↵erentiable. Using a higher order di↵erential operator K should hopefully produce
smoother fields. The relation between the order of K and smoothness of the corresponding Gaussian
field will be explored further in Example 3.9. �

11

12 CHAPTER 3. CALCULATIONS AND EXAMPLES

The rest of this chapter will focus on examples of the model (1.4). First we will derive some Green’s
functions and later they will be considered in a concrete setup. We will mainly focus on penalties
involving the the negative Laplace operator ��, where

�u(s, t) =
@2

@s2
u(s, t) +

@2

@t2
u(s, t).

The simplest case is L = ��, but it turns out that this model has some undesirable properties and
more general Laplacian penalties will be considered. First an interpretation of a Laplacian penalty will
be given. This is followed by a number of computations of Green’s functions. In connection with these
computations, di↵erent boundary conditions will be imposed on H , and techniques for finding Green’s
functions will be explored.

3.1 The Laplace operator

Proceeding with the notation from the previous chapters, @
s

and @
t

will denote the partial di↵erential
operators with respect to the first and second coordinate.

The following example gives an interpretation of the roughness measure when we use the negative
Laplacian as our smoothing operator L .

Example 3.2. Assume that H is the subspace of C2([0, 1] ⇥ [0, 1],R) which is restricted to those
functions ✓ that meet the boundary conditions

✓(0, t) = ✓(1, t) = ✓(s, 0) = ✓(s, 1) = 0. (3.1)

These types of boundary conditions are called Dirichlet boundary conditions. For ✓ 2 H it holds that

�
ˆ

1

0

ˆ
1

0

✓(s, t)�✓(s, t) ds dt = �
ˆ

1

0

ˆ
1

0

✓(s, t)(@2

s

+ @2

t

)✓(s, t) ds dt

= �
ˆ

1

0

ˆ
1

0

✓(s, t)@2

s

✓(s, t) ds dt�
ˆ

1

0

ˆ
1

0

✓(s, t)@2

t

✓(s, t) ds dt

=

ˆ
1

0

ˆ
1

0

|@
s

✓(s, t)|2 ds dt+

ˆ
1

0

ˆ
1

0

|@
t

✓(s, t)|2 ds dt, (3.2)

where integration by parts was used for the last equality. This means that one can think of L = ��
as the operator that measures roughness in the s-direction and t-direction independently. I.e. L =
K †

1

K
1

+ K †
2

K
2

, where K
1

= @
s

and K
2

= @
t

.

Another interpretation is possible. Consider for ✓ 2 H the operation

max
'2[0,2⇡]

|@
'

✓(s, t)|2 = max
'2[0,2⇡]

|cos(')@
s

✓(s, t) + sin(')@
t

✓(s, t)|2 .

It is easily verified that the maximizer of this expression is ' = arctan
⇣

@t✓(s,t)

@s✓(s,t)

⌘

, and thus it can be

3.2. GREEN’S FUNCTIONS IN PRACTICE 13

written as
�

�

�

�

cos

✓

arctan

✓

@
t

✓(s, t)

@
s

✓(s, t)

◆◆

@
s

✓(s, t) + sin

✓

arctan

✓

@
t

✓(s, t)

@
s

✓(s, t)

◆◆

@
t

✓(s, t)

�

�

�

�

2

=

�

�

�

�

�

�

�

�

1
r

1 +
⇣

@t✓(s,t)

@s✓(s,t)

⌘

2

@
s

✓(s, t) +

@t✓(s,t)

@s✓(s,t)
r

1 +
⇣

@t✓(s,t)

@s✓(s,t)

⌘

2

@
t

✓(s, t)

�

�

�

�

�

�

�

�

2

=

�

�

�

�

�

|@
s

✓(s, t)|2 + |@
t

✓(s, t)|2
p

|@
s

✓(s, t)|2 + |@
t

✓(s, t)|2

�

�

�

�

�

2

= |@
s

✓(s, t)|2 + |@
t

✓(s, t)|2.

Comparting this with (3.2), one realise that

max
'2[0,2⇡]

@
'

✓(s, t),

is a weak square root of �, which means that the penalty given by � is the first order roughness of ✓
in the direction in which it is maximal. By (3.2) it is easily verified that �� is positive definite on H ,
so it is known that K = (��)1/2 exists, but the above operator is not linear, so it does not correspond
to K .

�

Note that the previous example also works if we imposed Neumann boundary conditions

@
s

✓(0, t) = @
s

✓(1, t) = @
t

✓(s, 0) = @
t

✓(s, 1) = 0

even though these only make �� positive semidefinite.

3.2 Green’s functions in practice

A pleasing interpretation of using L = �� for measuring the roughness of an image has been found
in the cases of Dirichlet and Neumann boundary conditions. In this section and the next chapter,
examples related to the model (1.4) will be explored. It can be a great challenge to find suitable
covariance functions and verify that they are in fact positive definite. The way things are presented
here, all there is to do is to show that L is positive definite, which automatically ensures that G is also
positive definite, and to actually calculate G, which is in general very hard to do. For the operators we
will consider, it turns out that G can always be constructed from eigenfunction expansions. The first
example considers the simplest possible case.

Example 3.3. The Green’s function G corresponding to �� will be computed. Assume that H is the
space of twice continuously di↵erentiable functions u subject to the Dirichlet boundary conditions

u(0, t) = u(1, t) = u(s, 0) = u(s, 1) = 0.

The Green’s function can be derived by finding a solution to Poisson’s equation

��u(s, t) = f(s, t), u 2 H

with the structure (cf. the simple definition (2.2))

u(s, t) =

ˆ
1

0

ˆ
1

0

G((s, t), (v, w))f(v, w) d(v, w).

14 CHAPTER 3. CALCULATIONS AND EXAMPLES

One easily gets the idea of considering trigonometric functions for the solution. The function

sin(n⇡s) sin(m⇡t), n,m 2 N

satisfies the boundary conditions. Furthermore it holds that

�� sin(n⇡s) sin(m⇡t) = ⇡2(n2 +m2) sin(n⇡s) sin(m⇡t),

so this function is an eigenfunction of ��. Thus if one puts

u(s, t) =
1
X

n=1

1
X

m=1

c
nm

sin(n⇡s) sin(m⇡t),

and assumes that the double series and �� can be interchanged, it holds that

��u(s, t) =
1
X

n=1

1
X

m=1

c
nm

⇡2(n2 +m2) sin(n⇡s) sin(m⇡t).

To solve Poisson’s equation we will need that ��u(s, t) = f(s, t). One can multiply both sides of this
equation by sin(k⇡s) sin(l⇡t) and integrate to get that

ˆ
1

0

ˆ
1

0

sin(k⇡s) sin(l⇡t)f(s, t) ds dt = c
kl

⇡2(k2 + l2)
1

4
.

From this the constants c
nm

can be determined to be

c
nm

=
4

⇡2(n2 +m2)

ˆ
1

0

ˆ
1

0

sin(n⇡v) sin(m⇡w)f(v, w) dv dw.

The question is now if this choice of c
nm

will make ��u convergent and if the limit is in fact f . But
since f is bounded it clearly holds that f 2 L2([0, 1]⇥ [0, 1],R), and because the double sine terms make
up a complete orthonormal sequence in this space, it is known that ��u = f . Therefore the solution
to Poisson’s equation subject to the boundary conditions (3.1) is given by

u(s, t) =

ˆ
1

0

ˆ
1

0

1
X

n=1

1
X

m=1

4

⇡2(n2 +m2)
sin(n⇡v) sin(m⇡w) sin(n⇡s) sin(m⇡t)f(v, w) dv dw,

and thus the Green’s function becomes

G((s, t), (v, w)) = 4

⇡2

1
X

n=1

1
X

m=1

1

n2 +m2

sin(n⇡v) sin(m⇡w) sin(n⇡s) sin(m⇡t). (3.3)

Unfortunately this function has an undesirable property, namely that

G((s, t), (s, t)) = +1,

for all s and t. For the details see Example 3.6. Using this Green’s function as a covariance kernel
seems problematic, even though the process might be well defined, and similar covariance kernels are
considered for generalized Gaussian fields. An illustration of the shape of G can be found in Figure 3.1.

3.2. GREEN’S FUNCTIONS IN PRACTICE 15

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

Figure 3.1: Plots of G(· , (v, w)) corresponding to �� with Dirichlet boundary condtions. (v, w) has
been set to (0.5, 0.5) in the left plot and (0.3, 0.1) in the right. The sums in (3.3) were both cut o↵ at
their 40th term.

�

Example 3.4. Consider again the problem of finding the Green’s function corresponding to ��, but
this time subject to the Neumann boundary condtions given by

@
s

u(0, t) = @
s

u(1, t) = @
t

u(s, 0) = @
t

u(s, 1) = 0,

for all u 2 H . Let us try to use the definition (2.3) to identify G. Taking a hint from the previous
example, one could make a guess that G had the form

G((s, t), (v, w)) = 4

⇡2

1
X

n=1

1
X

m=1

1

n2 +m2

cos(n⇡s) cos(m⇡t) cos(n⇡v) cos(m⇡w), (3.4)

which clearly satisfies the boundary conditions, and it is easily verified that

��G((s, t), (v, w)) = 4
1
X

n=1

1
X

m=1

cos(n⇡s) cos(m⇡t) cos(n⇡v) cos(m⇡w) = �
(v,w)

(s, t),

where the derivative is understood in the weak sense. It is clear that this Green’s function also su↵ers
from the problem of being singular when s = v and t = w, as it basically has same properties as the
corresponding Green’s function for the Dirichlet problem. There is also another problem however, ��
is not neccesaraly positive definite on H , since any constant function c is in H and ��c = 0. Because
of this, G is not a true inverse, but only a right inverse. This means that G might in fact be positive
definite, but it is not easily verified, neither does it seem very likely. The rest of this example will
consider how to deal with the problem caused by the lack of positive definiteness.

One solution to the problem could be to impose the extra condition

u(0, 0) = 0

on H (the choice of (s, t) = (0, 0) is arbitrary.) This would ensure that �� became positive definite,
but the corresponding Green’s function is very hard to compute explicitly.

Another soulution could be to add a positive definite di↵erential operator to ��. For example one

16 CHAPTER 3. CALCULATIONS AND EXAMPLES

could consider ��+ "I with " > 0, which is clearly positive definite. To find the corresponding Green’s
function consider the equation

(��+ "I)u(s, t) = f(s, t) (3.5)

which is a Helmholtz type equation.1 It is clear that this equation has the same eigenfunctions as the
corresponding Poisson equation, only now

(��+ "I) cos(n⇡s) cos(m⇡t) = (⇡2n2 + ⇡2m2 + ") cos(n⇡s) cos(m⇡t),

and with an operation identical to that of Example 3.3, it is obtained that the Green’s function is given
by

G
"

((s, t), (v, w)) =
1
X

n=1

1
X

m=1

4

⇡2n2 + ⇡2m2 + "
cos(n⇡s) cos(m⇡t) cos(n⇡v) cos(m⇡w) (3.6)

which is positive definite. Choosing " close to 0 will give make G
"

⇡ G and for all practial purposes,
one can consider G to be positive definite. The shape of G, which is identical to the shape of G

"

for "
small, can be found in Figure 3.2.

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

Figure 3.2: Plots of G(· , (v, w)) corresponding to �� with Neumann boundary condtions. (v, w) has
been set to (0.5, 0.5) in the left plot and (0.3, 0.1) in the right. The sums in (3.4) were both cut o↵ at
their 40th term.

�

Before we move on to other examples, we will go a little in depth with the Green’s function (3.3)
exploring both the representation and singularity a little further. Even though this Green’s function is
not of great practical use, the method of the next example is also very useful for other examples, but
much easier to understand in this simple setting.

1The equation (3.5) is perhaps more correctly referred to as the screened Poisson equation or the time-independent

Klein-Gordon equation, nevertheless we refer to it as the Helmholtz equation.

3.2. GREEN’S FUNCTIONS IN PRACTICE 17

Example 3.5. Consider again the function

G((s, t), (v, w)) = 4

⇡2

1
X

n=1

1
X

m=1

1

n2 +m2

sin(n⇡v) sin(m⇡w) sin(n⇡s) sin(m⇡t).

The double sum representation converges very slowly to G, which unfortunately makes the representation
computationally intensive – this is a great problem because one typically has to evaluate these kinds
of functions millions of times. Another representation with better convergence properties is available,
however. If we start by only focussing on the two first boundary conditions

u(0, t) = u(1, t) = 0,

one could propose to write the Green’s function on the form

G((s, t), (v, w)) =
1
X

n=1

G
n

(t, w) sin(n⇡s) sin(n⇡v),

which we already know works. It holds that

��G((s, t), (v, w)) = �
(s,t)

(v, w),

and multiplying both sides with 4 sin(k⇡s) sin(k⇡v) and integrating over s and v, it is obtained that

k2⇡2G
k

(t, w)� @2

@t2
G

k

(t, w) = 2�
t

(w),

which means that the expansion coe�cients G
n

are themselves Green’s functions for the above ordinary
di↵erential equation, with the boundary conditions for solutions g that

g(0) = g(1) = 0.

With some calculations it can be obtained that

G
n

(t, w) =
2 sinh(n⇡(1� (t _ w))) sinh(n⇡(t ^ w))

n⇡ sinh(n⇡)
,

which gives the alternative expression for the Green’s function (3.3)

G((s, t), (v, w)) = 2

⇡

1
X

n=1

sinh(n⇡(1� (t _ w))) sinh(n⇡(t ^ w))

n sinh(n⇡)
sin(n⇡s) sin(n⇡v), (3.7)

which has somewhat better convergence properties than the previous found expression. �

We have derived an alternative expression of the Green’s function for Poisson’s equation with Dirichlet
boundary conditions. This expression has better computational properties, but the nature of the sin-
gularity is still not quite clear from the form of the function. This next example goes into the exact
nature of the singularity, and in addition we arrive at an expression for G with convergence properties
that are very impressive. It is quite an unaesthetic example, and the reader should not feel forced to
go through it, but is encouraged to look at the new expression for the Green’s function (3.9).

Example 3.6. We will use a method of Melnikov (1999)2 to get a second alternative expression for the
Green’s function (3.3), we start out with the single-series representation (3.7). We can rewrite the G

n

2Originally introduced for the Laplacian in Melnikov, Yu. A., Green’s Functions in Applied Mechanics, WIT Press
1995.

18 CHAPTER 3. CALCULATIONS AND EXAMPLES

terms as

⇡nG
n

(t, w) =

�

en⇡(1�(t_w)) � e�n⇡(1�(t_w))

� �

en⇡(t^w) � e�n⇡(t^w)

�

en⇡ � e�n⇡

=
en⇡(1�(t_w)+(t^w))) � en⇡(1�(t_w)�(t^w)) � en⇡((t_w)�1+(t^w)) + en⇡((t_w)�1�(t^w))

en⇡ � e�n⇡

=
en⇡

�

e�n⇡|t�w| � e�n⇡(t+w)

�

� e�n⇡

�

en⇡(t+w) � en⇡|t�w|�

en⇡ � e�n⇡

,

which we can split up as

⇡nG
n

(t, w) = e�n⇡|t�w| � e�n⇡(t+w) � en⇡(t+w) � en⇡|t�w| � e�n⇡|t�w| + e�n⇡(t+w)

2en⇡ sinh(n⇡)

= e�n⇡|t�w| � e�n⇡(t+w) � 2 sinh(n⇡t) sinh(n⇡w)

2en⇡ sinh(n⇡)
.

From this expansion, we can write G as

G((s, t), (v, w)) = 1

⇡

1
X

n=1

exp(�n⇡|t� w|)� exp(�n⇡(t+ w))

n
sin(n⇡s) sin(n⇡v)

� 2

⇡

1
X

n=1

sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
sin(n⇡s) sin(n⇡v).

From the sine product-to-sum identity the first term can be rewritten as

1

2⇡

1
X

n=1

exp(�n⇡|t� w|)� exp(�n⇡(t+ w))

n
(cos(n⇡(s� v))� cos(n⇡(s+ v))) .

Remembering that for |q| < 1 it holds that

1
X

n=1

qn

n
cos(n�) = � log

p

1� 2q cos(�) + q2 = � log
p

(1� qei�)(1� qe�i�), (3.8)

we get that the first term can be rewritten as

1

2⇡
log

s

(1� e�⇡(t+w)e⇡i(s�v))(1� e�⇡(t+w)e�⇡i(s�v))

(1� e�⇡|t�w|e⇡i(s�v))(1� e�⇡|t�w|e�⇡i(s�v))

⇥

s

(1� e�⇡|t�w|e⇡i(s+v))(1� e�⇡|t�w|e�⇡i(s+v))

(1� e�⇡(t+w)e⇡i(s+v))(1� e�⇡(t+w)e�⇡i(s+v))

!

,

which if L denotes the function

L(x+ iy) = |e⇡(x+iy) � 1| =
q

(e⇡(x+iy) � 1)(e⇡(x�iy) � 1),

where x, y 2 R, can be reduced to

1

2⇡
log

✓

L(z + &̄)L(z � &̄)

L(z � &)L(z + &)

◆

with z = t+ is and & = w + iv. We have obtained a new expression for the Green’s function

G((s, t), (v, w)) = 1

2⇡
log

✓

L(z + &̄)L(z � &̄)

L(z � &)L(z + &)

◆

� 2

⇡

1
X

n=1

sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
sin(n⇡s) sin(n⇡v)

3.2. GREEN’S FUNCTIONS IN PRACTICE 19

which clearly shows the logarithmic singularity when s = v and t = w in the first term. This represen-
tation has much better convergence properties than (3.7), but there is still one slight problem in terms
of convergence of the series. It can be realized by rewriting the coe↵ecient

sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
=

cosh(n⇡(t+ w))� cosh(n⇡(t� w))

2nen⇡ sinh(n⇡)

=
cosh(n⇡(t+ w))

n(e2n⇡ � 1)
� cosh(n⇡(t� w))

n(e2n⇡ � 1)
.

When t+ w ⇡ 2 the last term is negligible and

cosh(n⇡(t+ w)) =
en⇡(t+w) � e�n⇡(t+w)

2
⇡ e2n⇡

2

and so
cosh(n⇡(t+ w))

n(e2n⇡ � 1)
⇡ 1

n
,

which makes the convergence of the series slow when t+ w ⇡ 2, luckily we can do something about it.
Write

sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
=

sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
� cosh(n⇡(t+ w))

ne2n⇡
+

cosh(n⇡(t+ w))

ne2n⇡

= S
n

(s, v) +
cosh(n⇡(t+ w)))

ne2n⇡
,

where S
n

can be rewritten as

S
n

(s.v) =
sinh(n⇡t) sinh(n⇡w)

nen⇡ sinh(n⇡)
� cosh(n⇡(t+ w))

ne2n⇡

=
en⇡ sinh(n⇡t) sinh(n⇡w)� cosh(n⇡(t+ w)) sinh(n⇡)

ne2n⇡ sinh(n⇡)

=
en⇡t sinh(n⇡(w � 1))� e�n⇡t sinh(n⇡(w + 1))

2ne2n⇡ sinh(n⇡)
.

It is obvious that the series

� 2

⇡

1
X

n=1

S
n

(t, w) sin(n⇡s) sin(n⇡v)

converges uniformly, so now we only need to compute the last part of the series

� 2

⇡

1
X

n=1

cosh(n⇡(t+ w))

ne2n⇡
sin(n⇡s) sin(n⇡v) = � 1

⇡

1
X

n=1

en⇡(t+w) + e�n⇡(t+w)

ne2n⇡
sin(n⇡s) sin(n⇡v)

= � 1

2⇡

1
X

n=1

en⇡(t+w�2)

n
(cos(n⇡(s� v))� cos(n⇡(s+ v)))

� 1

2⇡

1
X

n=1

e�n⇡(t+w+2)

n
(cos(n⇡(s� v))� cos(n⇡(s+ v))).

20 CHAPTER 3. CALCULATIONS AND EXAMPLES

using (3.8), we get that this equals

� 1

2⇡

✓

� log
q

(1� e⇡(t+w�2)ein⇡(s�v))(1� e⇡(t+w�2)e�in⇡(s�v))

+ log
q

(1� e⇡(t+w�2)ein⇡(s+v))(1� e⇡(t+w�2)e�in⇡(s+v))

� log
q

(1� e�⇡(t+w+2)ein⇡(s�v))(1� e�⇡(t+w+2)e�in⇡(s�v))

+ log
q

(1� e�⇡(t+w+2)ein⇡(s+v))(1� e�⇡(t+w+2)e�in⇡(s+v))

◆

which we can write in terms of the L-function as

1

2⇡
log

✓

L(z
1

+ &̄
1

)L(z
2

+ &̄
2

)

L(z
1

+ &
1

)L(z
2

+ &
2

)

◆

where z
1

= t+ 1+ is, z
2

= t� 1 + is, &
1

= w+ 1+ iv and &
2

= w� 1 + iv. This leads to the final form
of the Green’s function:

G((s, t), (v, w)) = 1

2⇡
log

✓

L(z + &̄)L(z � &̄)L(z
1

+ &̄
1

)L(z
2

+ &̄
2

)

L(z � &)L(z + &)L(z
1

+ &
1

)L(z
2

+ &
2

)

◆

� 2

⇡

1
X

n=1

S
n

(t, w) sin(n⇡s) sin(n⇡v), (3.9)

which is far superior to any of the previous expressions in terms of convergence properties. �

Because of the singularity in the Green’s functions for ��, another di↵erential operator for smoothing
is needed. For this one could consider the di↵erential operator ��, which gives rise to the biharmonic
equation

��u(s, t) = f(s, t). (3.10)

Since
�� = @4

s

+ @4

t

+ 2@2

s

@2

t

,

for suitable boundary conditions one would expect that the corresponding Green’s function would at
least result in continuous samples, since the last term corresponds to the penalty operator for the
Brownian fields, and the derivatives in both directions are even further penalized. Again this will be
considered in detail in Example 3.9, but before that we will consider the `-harmonic or iterated Laplacian
equation

(��)`u(s, t) = f(s, t), (3.11)

where a higher value of ` corresponds to a smoother model. In the following ` will be referred to as the
order of smoothing and it will be assumed that ` is an integer greater than 1.

Example 3.7. Neither Dirichlet nor Neumann boundary conditions will make (��)` positive definite
when ` > 2. As before "I is added to the operator which results in the equation

((��)` + "I)u(s, t) = f(s, t) (3.12)

where ` � 2. For Dirichlet boundary conditions, i.e. u 2 H where

H =
n

u 2 C2`([0, 1]⇥ [0, 1],R)
�

�

�

u(0, t) = u(1, t) = u(s, 0) = u(s, 1) = 0
o

,

3.2. GREEN’S FUNCTIONS IN PRACTICE 21

the ` harmonic di↵erential operator (�1)`�` + "I has the same eigenfunctions as in example 3.3, and
the Green’s function becomes

G
"

((s, t), (v, w)) =
1
X

n=1

1
X

m=1

4

⇡2`(n2 +m2)` + "
sin(n⇡s) sin(m⇡t) sin(n⇡v) sin(m⇡w) (3.13)

and for Neumann boundary conditions the Green’s function is

G
"

((s, t), (v, w)) =
1
X

n=1

1
X

m=1

4

⇡2`(n2 +m2)` + "
cos(n⇡s) cos(m⇡t) cos(n⇡v) cos(m⇡w). (3.14)

Both Green’s functions are clearly bounded when ` � 2. �

One could easily allow the ` in the Green’s functions to be real, as long as the Green’s function contains
no singularities – wether these expressions will be Green’s functions for (��)` is not obvious, but it
would allow for greater flexibility in the degree of smoothness. These thoughts will not be further
explored here.
The case that will receive the most intensive treatment is the biharmonic operator �� corresponding
to ` = 2 and the triharmonic operator ��3. The Green’s function corresponding to the biharmonic
operator with " = 1, subject to the Dirichlet boundary conditions can be found in Figure 3.3, and
for the corresponding Neumann problem in Figure 3.4. The correlation structure along the boundary
introduced by the Green’s function for the Neumann problem seem somewhat unusual. This is most
likely caused by the discontinuity of the boundary conditions at the corners, that makes this type of
boundary conditions somewhat unnatural.

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0
0.000

0.002

0.004

0.006

0.008

0.010

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0
0.000

0.001

0.002

0.003

Figure 3.3: Plots of G
1

(· , (v, w)) corresponding to �� with Dirichlet boundary condtions. (v, w) has
been set to (0.5, 0.5) in the left plot and (0.3, 0.1) in the right. The sums in (3.13) were both cut o↵ at
their 40th term.

Example 3.8. An alternative expression for the Green’s function (3.13) when ` = 2 is given in Nicholson
& Bergman (1985) to be

G
"

((s, t), (v, w)) =
1p
"

1
X

n=1

�
n

(t ^ w, t _ w) sin(n⇡s) sin(n⇡v) (3.15)

22 CHAPTER 3. CALCULATIONS AND EXAMPLES

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0

−5e−04

0e+00

5e−04

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6
0.8

1.0

−0.005

0.000

0.005

Figure 3.4: Plots of G
1

(· , (v, w)) corresponding to �� with Neumann boundary condtions. (v, w) has
been set to (0.5, 0.5) in the left plot and (0.3, 0.1) in the right. The sums in (3.14) were both cut o↵ at
their 40th term.

where

�
n

(t, w) = � 1,n

(1� w)
1,n

(t)

1,n

(1)
+

2,n

(1� w)
2,n

(t)

2,n

(1)

with

1,n

(t) =
sinh(t

p

n2⇡2 +
p
")

p

n2⇡2 +
p
"

and

2,n

(t) =

8

>

<

>

:

sinh(t
p

|n2⇡2 �
p
"|)

p

|n2⇡2 �
p
"|

if
p
" 6= n⇡

t if
p
" = n⇡.

It is clear that if (3.15) needs N function evaluations to achive some relative error E
r

, the representation
(3.13) requires ⌦(N2) function evaluations to achieve the same relative error, which means that (3.15)
is considerably faster to use in terms of computation time.

A similar expression can be calculated for Neumann boundary conditions with some tedious calculations.
This will not be pursued here. �

Finally, let us review some geometrical properties of Gaussian fields with the di↵erent choices of Green’s
functions as covariances.

Example 3.9. Let x be a centered Gaussian field with covariance function G
"

given by (3.13). In the
following we will make use of the results that

1
X

n=1

1
X

m=1

n+m

(n2 +m2)`
< 1 (3.16)

for all ` � 2, and also that

1
X

n=1

1
X

m=1

n2k(n+m)

(n2 +m2)`
< 1 (3.17)

3.2. GREEN’S FUNCTIONS IN PRACTICE 23

when ` � k + 2 and it equals +1 when ` = k + 1. Neither of these results are trivial, but can be
established from properties of the Hurwitz zeta function.

Let us first consider continuity properties of x for di↵erent values of `. Since we have that G
0

� G
"

for
all " > 0 we will work with G

0

. Denote by D the function

D((s, t), (v, w)) = G
0

((s, t), (s, t)) + G
0

((v, w), (v, w))� 2G
0

((s, t), (v, w)).

By Theorem 2.1 x is continuous if we can show that

D((s, t), (v, w)) 1

log(|s� v|+ |t� w|)2 (3.18)

for |s� v|+ |t� w| < ⌘.

For any (s, t) 2 [0, 1]⇥ [0, 1] and any unit vector (↵
1

,↵
2

) we have that

@

@⌘
D((s, t), (s+ ↵

1

⌘, t+ ↵
2

⌘)) = 8
1
X

n=1

1
X

m=1

n+m

⇡2`(n2 +m2)`

⇣

sin(n⇡s) sin(n⇡t))

� sin(n⇡(s+ ↵
1

⌘) sin(m⇡(t+ ↵
2

⌘))
⌘⇣

� ↵
1

n⇡ cos(n⇡(s+ ↵
1

⌘) sin(m⇡(t+ ↵
2

⌘))

�↵
2

m⇡ sin(n⇡(s+ ↵
1

⌘)) cos(m⇡(t+ ↵
2

⌘))
⌘

which is convergent by (3.16). Since the above funtion is bounded (as opposed to the derivative of the
inverse logarithm in (3.18)) and by the fact that D is zero on the diagonal, there exists a rectangle of
(v, w)’s close to (s, t) such that the equation (3.18) holds.

Now let us move to the question of di↵erentiability. We have that

@2k

@sk@vk
D((s, t), (v, w)) = �8

1
X

n=1

1
X

m=1

n2k

⇡2(`�k)(n2 +m2)`
g
k

(n⇡s) sin(m⇡t)g
k

(n⇡v) sin(m⇡w)

where

g
k

(s) =

(

sin(s) for k even

cos(s) for k odd.

A simple calculation shows that

@

@⌘

@2k

@sk@vk
D((s, t), (v, w))

�

�

�

v=s+↵1⌘

w=t+↵2⌘

!

is finite if (3.17) holds. From this we obtain the following theorem.

Theorem 3.1. AGaussian process x ⇠ N (0,G), where G is the Green’s function for (��)` is continuous
for ` � 2. For ` � 3 it furthermore holds that x is (at least) `� 2 times continuously di↵erentiable.

Note that it has not been shown that the Gaussian process in the above theorem is exactly `� 2 times
continously di↵erentiable, but the author hypothesize that this is in fact the case. �

As the final example of this chapter we will consider an alternative roughness penalty.

Example 3.10. Instead of confining the di↵erential operators to [0, 1] ⇥ [0, 1], one could let them be
defined on the entire plane R2 with the boundary conditions translated to plus and minus infinity in
both coordinates, and argue that we are just watching a window of an image. [0, 1] ⇥ [0, 1] is not an

24 CHAPTER 3. CALCULATIONS AND EXAMPLES

ideal window since it is not symmetric around (0, 0), and it is better to think of the images as being
defined on [�1, 1]⇥ [�1, 1]. If we use L = (��)` one would get

ˆ
1

�1

ˆ
1

�1

✓(s, t)(��)`✓(s, t) ds dt

as our roughness penalty (corresponding to putting ✓ equal to zero outside [�1, 1] ⇥ [�1, 1], where we
have no observations) but the corresponding Green’s function will have a much simpler form than what
has been seen so far. Meinguet (1979) shows that the corresponding Green’s function is

G((s, t), (v, w)) = 1

22`�1⇡((`� 1)!)2
k(s, t)� (v, w)k2(`�1) log k(s, t)� (v, w)k, (3.19)

where k · k denotes the Euclidian norm. This Green’s function has some very appealing properties,
firstly that it does not involve any infinite series and secondly that it is stationary. In terms of the
model (1.4) however, it does not make much sense as a covariance function. �

3.3 Relation to other work

The one-dimensional version of the model (1.1) with a roughness penalty is the standard model in
functional data analysis (see e.g. Chapter 5 in the main reference on functional data analysis Ramsay
& Silverman (2005).) It is of course also the natural model to start out from in higher dimensions, and
there are numerous texts that take this approach. The usual approach to this problem would be to use
some sort of spline smoothing (e.g. using (2.7)), and to infer the smoothing parameter � and perhaps
also the order ` by generalized cross validation. Algorithms to do this has been developed, and a number
of optimizations of the necessary matrix operations has been suggested, some of which are discussed
in Wahba (1990). The one-dimensional version of the model (1.4) is also introduced in Kimeldorf &
Wahba (1970) and the corresponding Bayesian estimate is shown to be equal to the spline solving the
smoothing problem. To the author’s knowledge is has not been pursued in higher dimensions. This is
probably due to the fact that the Green’s function used for smoothing, likely due to ease of calculation,
is usually given by (3.19), which is not very convincing as a covariance. Alternative one-dimensional
models are presented in Kimeldorf & Wahba (1971) where both prediction and filtering are related to
the (spline) solution of the smoothing problem. The filtering problem is also used as an alternative
model for the multi-dimensional version of (1.1) in Wahba (1978).

Dyn et al. (1979) suggest the second-order smoothness criterion

ˆˆ
��✓(s, t) ds dt

as opposed to a criterion without any mixed derivatives, and some results on this choice is shown.
Wahba & Wendelberger (1980) introduce the penalty J

`

(✓), given by

J
`

(✓) =

ˆˆ
`

X

k=0

✓

`

k

◆

�

�@k

s

@`�k

t

✓(s, t)
�

�

2

ds dt

which corresponds to the choice L = (��)k with suitable boundary conditions. They consider k = 1
but note that the solution to the problem involves the Green’s function for the Laplacian which is
unbounded, and instead proceed with the case k = 2. In Wahba & Wendelberger (1980) the idea of
smoothing (meteorological) images with the Laplacian is credited to Sasaki3 who apparently used the
Laplacian, even though he noted that the corresponding Green’s function was unbounded. His approach

3Sasaki, U., An objective analysis for determining initial conditions for the primary equations, Technical Report 208,
Department of Oceanography and Meteorology, A&M College of Texas (1960)

3.3. RELATION TO OTHER WORK 25

involved specifying an elliptic partial di↵erential equation with some boundary conditions, which sounds
similar to our approach.

In Wahba &Wendelberger (1980) (p. 1128) it is mentioned that derivatives of the generalized smoothing
spline function can be obtained by analytical di↵erentiation up to the order ` � 2, which seems to fit
very well with Theorem 3.1. The result is stated without any proof or reference.

chapter 4

DATA EXAMPLES

Example 4.1. A noisy image y is observed, where

y
ij

= ✓(s
i

, t
j

) + "
ij

, i, j = 1, . . . , 21

with
✓(s, t) = 70s2(s� 1)t(t� 1)

and the "
ij

’s are independent and identically normal distributed random variables with standard devi-
ation 0.5. A plot of ✓ and the (very) noisy observation y can be found in Figure 4.1.

✓ satisfies Dirichlet boundary conditions, so smoothing will be done with (��)` on the space of 2` times
di↵erentiable functions that are zero along the border. It should be noted that using observations on
the border provides additional information and results in significantly better estimates than what is
obtained without using the boundary information.
The smoothing of y (pic) with (��)` + "I subject to Dirichlet boundary conditions with the boundary
information used, can be done with the laplacesmooth R package using the code in Listing 4.1.

Listing 4.1: Smoothing an image and plotting the smooth

size <- dim(pic)

vcov <- covmatrix(n1 = size[1], n2 = size[2], order = 3, epsilon = epsilon ,

type = "dirichlet ")

est <- estimate(pic , vcov)$par

persp(x = steps , y = steps , cematrix(pic , est[1], est[2], vcov))

Figure 4.2 holds a plot of the smoothed images for ` = 1, . . . , 4 where both sums in (3.13) have been
cut o↵ at their 20th term and " = 0.

The corresponding (maximum likelihood) parameter estimates in the Bayesian model (1.4) are given in
the table below where ⌧ is the scaling parameter of the Gaussian field x.1

` �̂ ⌧̂
1 0.4146035 0.8477593
2 0.4870721 8.064982
3 0.4936229 70.20042
4 0.4969383 533.5105

The estimates of � become better (increase) as ` increases, and the ⌧ estimates increase with `, which
is caused by the decreasing scales of the corresponding Green’s functions. 100 samples have been sim-
ulated for each of the four orders of smoothing, and the parameters have been estimated. A boxplot of
the � estimates can be found in Figure 4.3. The median of the estimates becomes closer to the real value
of 0.5 as ` increase, but from ` = 3 to ` = 4 the width of the interval of estimated values also increase.
This is not a general feature however. The result is interesting, since the original function is in the null
space of e.g. ��3, but it still gives better results than ` = 1 and 2. It is not clear that a similar plot of

1Note that maximum likelihood estimation in the case ` = 1 is only possible due to the censoring of the double series,
as it would otherwise have resulted in infinite variance.

27

28 CHAPTER 4. DATA EXAMPLES

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

t

s

t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

t

s

t

Figure 4.1: The function ✓ in a grayscale representation and in three dimensions (top plots) and the
observed image (bottom plots.)

the ⌧ estimates would provide any valuable information, but it should be noted that the estimates of ⌧
become less reliable for higher values of ` (> 5), which will also produce less reliable � estimates. This
is most likely due to a numerical problem caused by the corresponding Green’s functions taking values
very close to zero.

Now let us consider the problem of estimating the partial derivatives of ✓. From (1.5) it is obtained
that the estimate of the partial derivative @

s

E[x | y] in every observation point is given by

n

⌧2@
s

G((s, t), (s
k

, t
l

))
o

(k,l)

n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o�1

(i,j),(k,l)

y

and likewise for other derivatives. Figure 4.4 holds plots of @
s

✓(s, t) and @
t

✓(s, t). For ` > 1 we know
that the smoothed images E [x | y] is always 2` times di↵erentiable, but Theorem 3.1 only tells us that
the Gaussian process x is ` � 2 times continuously di↵erentiable, this would suggest that if the model
were in fact true we would only have information about derivatives up to order ` � 2, so to be on the
safe side one should refrain from estimating derivatives of higher order.
Looking at Figure 4.2 it is clear that ` = 1 produces a smooth that is quite rough, and thus we will
not bother to estimate partial derivatives, as their behaviour will be too extreme. This way the partial

29

s

t

` = 1

s

t

` = 2

s

t

` = 3

s

t

` = 4

Figure 4.2: The smooths of the observed image for di↵erent values of `. ` = 3 and ` = 4 produce
smooths that are indistinguishable from ✓ on this scale.

derivatives have only been estimated for ` � 2 and can be found in Figure 4.5. All estimates capture
the shape of the partial derivatives reasonably well, but it is only in the cases ` = 3 and ` = 4 that
the estimates could be considered good, with the latter producing a quite nice estimate. The biggest
problem in the estimates is in the estimate of @

s

✓ along the edge s = 1. It is no surprise that the biggest
problem is along here as this is the edge with the greatest deviation from 0.
Measuring the absolute di↵erence from the estimated pictures and the true picture by

21

X

i=1

21

X

j=1

|✓(s
i

, t
j

)� E [x(s
i

, t
j

) | y]|

one gets the values summarized in the Table 4.1.
Interestingly the estimate of @

s

✓ seem to be better for ` = 3 than ` = 4. In other replications this
phenomenon is rarely observed for ` = 4, but is typically seen when going from ` = 4 to ` = 5 or from 5
to 6. This makes sense in relation to the overfitting allowed by these higher-order roughness penalties.

30 CHAPTER 4. DATA EXAMPLES

` @ Absolute di↵erence
1 � 72.30071
2 � 34.43044
3 � 29.3492
4 � 28.97725
2 @

s

407.5034
3 @

s

266.8843
4 @

s

268.7481
2 @

t

372.576
3 @

t

226.5541
4 @

t

205.6528

Table 4.1: Absolute di↵erence between true (Figure 4.4) and estimated derivatives (Figure 4.5).

1 2 3 4

0.
40

0.
45

0.
50

0.
55

� estimates for ` = 1, . . . , 4
100 samples each

Figure 4.3: Boxplot of � estimates for di↵erent values of `. Each box is based on 100 independent
replications.

�

31

s

t

@
s

✓(s, t)

s
t

@
t

✓(s, t)

Figure 4.4: Partial derivatives of ✓.

32 CHAPTER 4. DATA EXAMPLES

s

t

@
s

E [x | y] , ` = 2

s

t

@
t

E [x | y] , ` = 2

s
t

@
s

E [x | y] , ` = 3

s

t

@
t

E [x | y] , ` = 3

s

t

@
s

E [x | y] , ` = 4

s

t

@
t

E [x | y] , ` = 4

Figure 4.5: Estimated partial derivatives of ✓.

Example 4.2. Now consider the observation of an image y where

y
ij

= x(s
i

, t
j

) + "
ij

, i, j = 1, . . . , 21 (4.1)

33

with x centered Gaussian with covariance ⌧2G, where G is the Green’s function corresponding to (��)`

and the "
ij

’s are independent N (0,�2) distributed variables. An image of such an x can be simulated
with the R code from Listing 4.2 using the laplacesmooth package. The simulation is done by using
the eigenvalues and eigenvectors from the relevant covariance matrix to produce a square root of the
matrix, which is then multiplied to a vector of standard normal distributed variables, then converting
the resulting vector to an n

1

⇥ n
2

matrix.

Listing 4.2: Simulating and plotting a centered Gaussian process with covariance G

size <- 21

steps <- seq(0, 1, length = size)

vcov <- covmatrix(n1 = size , n2 = size , order = 3)

pic <- sim(vcov)

persp(x = steps , y = steps , pic)

Simulations of centered Gaussian fields x with covariance G for di↵erent choices of ` and boundary
conditions are found in Figure 4.6. The fields have been simulated from the same seed (i.e. the same
observation of an image of independent standard normal distributed random variables) and the di↵erent
choices of Green’s functions change the behaviour of the fields in exactly the ways one would expect.
For ` = 2 the di↵erence between Dirichlet and Neumann boundary conditions is that the image is tied
down for Dirichlet conditions, and for Neumann conditions the “inner motion” of the image is carried
on to the edges. For ` = 3 the fields have similar geometrical features, but are smoother (and are scaled
down.) The problem with the continuity of the Neumann boundary conditions is somewhat noticeable
by the shape of the Neumann processes. The figure seems to suggest that the di↵erence of scale is
approximately a factor 10. Therefore we will put ⌧ = 1 in (4.1) when ` = 2 and ⌧ = 10 when ` = 3.
� will be fixed at 0.01. The parameters were decently recovered as maximum likelihood estimates and
can be found in the table below.

` Boundary conditions �̂ ⌧̂
2 Dirichlet 0.01089435 0.96460265
2 Neumann 0.01036528 0.98541738
3 Dirichlet 0.01067704 9.54557709
3 Neumann 0.01058705 9.41531745

To obtain any conclusions a more careful normalization procedure has to be developed. E.g. one could
consider ˆ

1

0

Var
`

[x(t, t)] dt

as a measure of the scale of the corresponding process. For a general ` and Dirichlet boundary conditions
the above integral becomes

4

⇡2`

1
X

n=1

1
X

m=1

1

(n2 +m2)`

ˆ
1

0

sin2(n⇡t) sin2(m⇡t) dt =
1

⇡2`

1
X

n=1

1
X

m=1

m 6=n

1

(n2 +m2)`
+

3

22`+1⇡2`

1
X

n=1

1

n2`

.

It is seen that the same result holds for Neumann boundary conditions, so only the parameter ` deter-
mines the scale. The table on the next page holds numerically computed values for di↵erent values of
` and the associated choices of ⌧ that makes the processes ⌧x comparable across the di↵erent `’s.

`
´
1

0

´
1

0

Var
`

[x(s, t)] ds dt ⌧

2 1.84 · 10�3 1
3 2.41 · 10�5 8.73
4 4.10 · 10�7 67.0
5 7.62 · 10�9 491

34 CHAPTER 4. DATA EXAMPLES

s

0.0

0.2

0.4

0.6
0.8

1.0

t

0.0

0.2

0.4

0.6

0.8
1.0

-0.10
-0.05
0.00
0.05
0.10

` = 2
Dirichlet boundary conditions

s

0.0

0.2

0.4

0.6
0.8

1.0
t

0.0

0.2

0.4

0.6

0.8
1.0

-0.10
-0.05
0.00
0.05
0.10

` = 2
Neumann boundary conditions

s

0.0

0.2

0.4

0.6
0.8

1.0
t

0.0

0.2

0.4

0.6

0.8
1.0

-0.01

0.00

0.01

0.02

` = 3
Dirichlet boundary conditions

s

0.0

0.2

0.4

0.6
0.8

1.0

t

0.0

0.2

0.4

0.6

0.8
1.0

-0.01

0.00

0.01

0.02

` = 3
Neumann boundary conditions

Figure 4.6: Simulated centered Gaussian processes with covariances given by the Green’s functions
G corresponding to (��)` with di↵erent choices of boundary conditions. The processes have been
generated using the same seed.

⌧ is computed as

⌧ =

v

u

u

t

´
1

0

´
1

0

Var
2

[x(s, t)] ds dt´
1

0

´
1

0

Var
`

[x(s, t)] ds dt
.

Two boxplots of the estimated values of � and ⌧ in model (4.1) with ⌧ given in the above table and
� = 0.01 is found in Figure 4.7. The estimated values of � are quite reasonable. For the ⌧ estimates it
seems that the variance of the estimator increase drastically with `. Wether this is a natural condition
or caused by numerical instability is not clear.

�

35

d2 d3 d4 d5 n2 n3 n4 n5

0.
00
90

0.
01
00

0.
01
10

� estimates for ` = 2, . . . , 5
100 samples each

d2 d3 d4 d5 n2 n3 n4 n5

0
20
0

40
0

60
0

80
0

⌧ estimates for ` = 2, . . . , 5
100 samples each

Figure 4.7: Boxplots of the estimated � and ⌧ values. Each box corresponds to 100 independent
simulated Gaussian processes with normal distributed noise with standard deviation � = 0.01. The box
names indicate the choice of boundary conditions and value of `, i.e. ‘d2’ means Dirichlet boundary
conditions with ` = 2.

Example 4.3. As our final example in this section we will consider a complex fixed image. We have
the model

y
ij

= ✓(s
i

, t
j

) + "
ij

, i, j = 1, . . . , 32

with

✓(s, t) = cos

✓

3⇡

4
((2s� 1)2 + (2t� 1)2)

◆

� cos(⇡(2s� 1)) sin(⇡(2t� 1))

and the "
ij

’s are independent and identically normal distributed random variables with zero mean and
standard deviation 0.09. This image and the choice of standard deviation is identical to an example
found in O’Sullivan (1991), where another method is used for the estimation/smoothing. A plot of ✓
and the noisy observation y can be found in Figure 4.8.

The image ✓ neither satisfies Dirichlet or Neumann boundary conditions. To deal with that we will
assume that the observations are all within the square [0.25, 0.75]⇥ [0.25, 0.75]. If pic is a matrix object
containing the observations y, the analysis can be done with the laplacesmooth package using the code
from Listing 4.3.

Listing 4.3: Specifying an alternative boundary

cov3d <- covmatrix(n1 = 32, n2 = 32, slow = 0.25, shigh = 0.75, tlow = 0.25,

thigh = 0.75, order = 3, type = "dirichlet ")

est3d <- estimate(pic , cov3d)$par

smooth3d <- cematrix(pic , est3d[1], est3d [2], cov3d)

persp(x = steps , y = steps , smooth3d)

In Figure 4.9 the smooths for various combinations of boundary conditions and degrees of smoothing
can be found. The specific maximum likelihood estimates are of less interest than the shape of the

36 CHAPTER 4. DATA EXAMPLES

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

t

s

t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

t

s

t

Figure 4.8: The function ✓ in a grayscale representation and in three dimensions (top plots) and the
observed image (bottom plots.)

images. The four smooths are indistinguishable to the naked eye, but if one measures the absolute
di↵erence from the estimated pictures and the true picture by

32

X

i=1

32

X

j=1

|✓(s
i

, t
j

)� E [x(s
i

, t
j

) | y]|

one gets the values summerized in the table below

` Boundary conditions Absolute di↵erence
3 Dirichlet 22.77934
3 Neumann 23.2517
4 Dirichlet 19.03713
4 Neumann 20.03809

It seems that Dirichlet boundary conditions give slightly better fits judged by this measure, and also
that ` = 4 is better than ` = 3. It also seems that the slight increase in the number of observations has
a↵ected the quality of the smooths compared to e.g. Example 4.1.

�

37

s

t

` = 3
Dirichlet boundary conditions

s

t

` = 3
Neumann boundary conditions

s

t

` = 4
Dirichlet boundary conditions

s

t

` = 4
Neumann boundary conditions

Figure 4.9: The estimates of ✓ for various combinations of boundary conditions and degrees of smoothing.

chapter 5

APPROXIMATIONS

The formulae from Chapter 1 will only allow for maximum likelihood estimation for sparsely observed
images, as already mentioned. In this chapter the computationally intensive matrix operations will be
approximated by continuous operations that can be implemented to run in constant or linear time.
These are all similar to the one-dimensional approximations found in Markussen (2013).

5.1 Approximations of matrix computations

We want to approximate the operation of the matrix {G((s
i

, t
j

), (s
k

, t
l

))}
(i,j),(k,l)

in terms of the integral
operator G given by

G f(s, t) =

ˆ
1

0

ˆ
1

0

G((s, t), (v, w))f(v, w) dv dw.

For this we will need to specify the exact setup in which we are working. Let (s
k

, t
l

)
kl

be a grid of
points in [0, 1]⇥ [0, 1] where 0 k n

1

+1 and 0 l n
2

+1, with s
0

= t
0

= 0 and s
n1+1

= t
n2+1

= 1,
and assume furthermore that it holds that

s
k+1

� s
k

=
1

n
1

+ 1
, t

l+1

� t
l

=
1

n
2

+ 1

for all 0 k n
1

and 0 l n
2

. I.e. the points in the grid (s
k

, t
l

)
kl

are equidistantly spaced. For
z 2 R(n1+2)⇥(n2+2) denote by E

z

the piecewise linear embedding of z into C([0, 1]⇥[0, 1],R) with anchors
given by the grid (s

k

, t
l

)
kl

. I.e. E
z

is the piecewise linear function (linear interpolation) for which

E
z

(s
i

, t
j

) = z
ij

for i = 0, . . . , n
1

+ 1 and j = 0, . . . , n
2

+ 1.

The next proposition establishes the connection between the matrix {G((s
i

, t
j

), (s
k

, t
l

))} and the integral
operator G .

Proposition 5.1. Let G((s, t), (· , ·)) : [0, 1]⇥ [0, 1] ! R be a function that is twice di↵erentiable on
the squares [s

k

, s
k+1

]⇥ [t
l

, t
l+1

] with continuous second derivatives. If

z
0,l

= z
n1+1,l

= z
k,0

= z
k,n2+1

= 0,

for all l, k there exist ⇠
1k

2 [s
k�1

, s
k

] and ⇠
2l

2 [t
l�1

, t
l

] such that

n2
X

l=1

n1
X

k=1

G((s, t), (s
k

, t
l

))z
kl

� (n
1

+ 1)(n
2

+ 1)

ˆ
1

0

ˆ
1

0

G((s, t), (v, w))E
z

(v, w) dv dw,

equals

1

12(n
2

+ 1)2

n2+1

X

l=1

n1
X

k=1

⇣

G((s, t)(s
k

, ·))E
z

(s
k

, ·)
⌘

(2)

(⇠
2l

)

+
1

12(n
1

+ 1)2

n2
X

l=1

n1+1

X

k=1

⇣

G((s, t)(· , t
l

))E
z

(· , t
l

)
⌘

(2)

(⇠
1k

)

� 1

144(n
1

+ 1)2(n
2

+ 1)2

n2+1

X

l=1

n1+1

X

k=1

⇣

G((s, t)(· , ·))E
z

⌘

(2,2)

(⇠
1k

, ⇠
2l

), (5.1)

where the superscript numbers in parentheses indicate (partial) derivatives.

39

40 CHAPTER 5. APPROXIMATIONS

Proof. The Trapezoidal rule of integration give points ⇠
1k

2 [s
k�1

, s
k

] such that the scaled integral

(n
1

+ 1)(n
2

+ 1)
´
1

0

G((s, t), (v, w))E
z

(v, w) dv equals

(n
2

+ 1)
n1
X

k=1

G((s, t)(s
k

, w))E
z

(s
k

, w)� (n
2

+ 1)

12(n
1

+ 1)2

n1+1

X

k=1

⇣

G((s, t)(· , w))E
z

(· , w)
⌘

(2)

(⇠
1k

).

Using the Trapezoidal rule again, points ⇠
2l

2 [t
l�1

, t
l

] are obtained such that the integral of the above
function with regard to w equals

n2
X

l=1

n1
X

k=1

G((s, t), (s
k

, t
l

))E
z

(s
k

, t
l

)� 1

12(n
2

+ 1)2

n2+1

X

l=1

n1
X

k=1

⇣

G((s, t)(s
k

, ·))E
z

(s
k

, ·)
⌘

(2)

(⇠
2l

)

� 1

12(n
1

+ 1)2

n2
X

l=1

n1+1

X

k=1

⇣

G((s, t)(· , t
l

))E
z

(· , t
l

)
⌘

(2)

(⇠
1k

)

+
1

144(n
1

+ 1)2(n
2

+ 1)2

n2+1

X

l=1

n1+1

X

k=1

⇣

G((s, t)(· , ·))E
z

⌘

(2,2)

(⇠
1k

, ⇠
2l

)

where it has been used that
z
0,l

= z
N1+1,l

= z
k,0

= z
k,N2+1

= 0.

Note that the error (i.e. the di↵erence of the two expressions) in Proposition 5.1 can be explicitly
written out in terms of the second derivatives of G and the ⇠

kl

’s. What is gained in enlightenment from
this expression can be discussed however, and it is left to the interested reader.

Denote by G the n
1

n
2

⇥ n
1

n
2

matrix

n

G((s
i

, t
j

)(s
k

, t
l

))
o

(i,j),(k,l)

and by G the (n
1

+ 2)(n
2

+ 2) ⇥ (n
1

+ 2)(n
2

+ 2) where the border entries are included. If z denotes
the n

1

n
2

⇥ 1 matrix of observations

z =
n

z
kl

o

(k,l)

and z denotes the (n
1

+ 2)(n
2

+ 2)⇥ 1 matrix with zeros at the entries corresponding to border obser-
vations, then proposition 5.1 suggests the approximation

Gz ⇡
n

G ME
z

(s
i

, t
j

)
o

(i,j)

(5.2)

where M is the multiplication operator

M f = (n
1

+ 1)(n
2

+ 1)f.

We can identify z with the function ME
z

2 C([0, 1]⇥ [0, 1],R). With this identification the roles of G,
G and G will be similar on their respective spaces. A schematic representation of the approximation
setup can be found in Figure 5.1.

Since inversion is a continuous operation, the conditional expectation can be approximated by

bE [x | y] = ⌧2G M
�

⌧2G M + �2I
��1

E
y

=

✓

I+ �2

⌧2
M�1L

◆�1

E
y

.

5.1. APPROXIMATIONS OF MATRIX COMPUTATIONS 41

R(n1+2)(n2+2)Rn1n2 C([0, 1]⇥ [0, 1],R)

R(n1+2)(n2+2)Rn1n2 C([0, 1]⇥ [0, 1],R)

ME

GG G

point evaluation

Figure 5.1: The structure of the approximation (5.2). Notice that the diagram does not commute.

Unfortunately we have no knowledge of the quality of the approximation of the inverse term, other than
that the error will vanish as the mesh of the observation grid disappear. Interestingly we have that

1

⌧2
L bE [x | y] = M

�

⌧2G M + �2I
��1

E
y

=
1

�2

M
⇣

I� ⌧2G M
�

⌧2G M + �2I
��1

⌘

E
y

=
1

�2

M
⇣

E
y

� bE [x | y]
⌘

, (5.3)

which shows us that even though our estimate is di↵erentiable up to the order of L , the derivative
L bE [x | y] is only a scaling of the residual, and thus does not contain any information that is not already
in bE [x | y]. The corresponding approximation of the conditional variance is

bV [x | y] = ⌧2G � ⌧2G M
�

⌧2G M + �2I
��1

⌧2G

= ⌧2G �
✓

I+ �2

⌧2
M�1L

◆�1

⌧2G

= ⌧2G �

I�
✓

I+ �2

⌧2
M�1L

◆�1

�2

⌧2
M�1L

!

⌧2G

= ⌧2
✓

⌧2

�2

M + L

◆�1

. (5.4)

Recall that the likelihood can be written as

`
y

(�2, ⌧2) =
1

2
log det⌃+

1

2�2

n

y
ij

o>

(i,j)

n

y
ij

� E[x(s
i

, t
j

) | y]
o

(i,j)

,

with
⌃ =

n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o

(i,j),(k,l)

.

The quadratic term is approximated by

1

2�2

n

y
ij

o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

(5.5)

42 CHAPTER 5. APPROXIMATIONS

which can be numerically unstable, but writing it as

1

2�2

n

y
ij

� bE [x(s
i

, t
j

) | y]
o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

+
1

2�2

n

bE [x(s
i

, t
j

) | y]
o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

and using (5.3) on the last matrix, we get that the term equals

1

2�2

n

y
ij

� bE [x(s
i

, t
j

) | y]
o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

+
1

2⌧2

n

bE [x(s
i

, t
j

) | y]
o>

(i,j)

n

M�1L bE [x(s
i

, t
j

| y]
o

(i,j)

.

Remembering that L = K †K one realise that the last matrix product is a square, and then we only
have positive terms, which should solve the problem.

Note: In the laplacesmooth package the quadratic term approximation is implemented using (5.5).

For the determinant things are a bit more tricky, and one has to come up with a clever trick to make a
reasonable approximation. First of all we have that

log det⌃ = log det
n

⌧2G((s
i

, t
j

)(s
k

, t
l

)) + �21
(i,j)=(k,l)

o

(i,j),(k,l)

= log det
n

⌧

2/�2G((s
i

, t
j

)(s
k

, t
l

)) + 1
(i,j)=(k,l)

o

(i,j),(k,l)

+ n
1

n
2

log �2. (5.6)

Denote by ⌅ the n
1

n
2

⇥ n
1

n
2

matrix

⌅ =
n

⌧

2/�2G((s
i

, t
j

)(s
k

, t
l

)) + 1
(i,j)=(k,l)

o

.

By ⌅ we will denote the (n
1

+ 2)(n
2

+ 2)⇥ (n
1

+ 2)(n
2

+ 2) which also has elements corresponding to
the boundary. Now introduce the matrix function

⌅(↵) =
n

↵⌧

2/�2G((s
i

, t
j

)(s
k

, t
l

)) + 1
(i,j)=(k,l)

o

.

Di↵erentiating log det⌅(↵) with respect to ↵ yeilds

d

d↵
log det⌅(↵) =

⇣

det⌅(↵)
⌘�1

det⌅(↵) tr

✓

⌅(↵)�1

d

d↵
⌅(↵)

◆

,

where Jacobi’s formula has been used. Now introduce the basis vectors e
`

= {1
`=n

}
n

2 Rn1n2 . Further
denote by E

ij

the (n
1

+ 2)⇥ (n
2

+ 2) matrix with zero’s everywhere except at the entry i, j (with the
coordinate nummeration starting with 0) where the value is 1. It is easily obtained that

log det⌅ =

ˆ
1

0

n1n2
X

`=1

e>
`

⌅(↵)�1

n

⌧

2/�2G((s
i

, t
j

), (s
k

, t
l

)
o

(i,j),(k,l)

e
`

d↵,

which can be approximated by

ˆ
1

0

n1
X

i=1

n2
X

j=1

�

↵⌧

2/�2G M + I
��1

⌧

2/�2G ME
Eij (si, tj) d↵,

where the second basis vector acts as a matrix operation that is approximated by ME
Eij and the first

as the point evaluation. One can further approximate this expression by substituting the sums with

5.1. APPROXIMATIONS OF MATRIX COMPUTATIONS 43

integrals. For this an extra normalization operator M will need to be used on the E
Eij term. As the

mesh of the grid vanishes, the function ME
Eij converges to a Dirac delta function. The approximation

becomes ˆ
1

0

ˆ n2
n2+1

1
n2+1

ˆ n1
n1+1

1
n1+1

✓

↵I+ �2

⌧2
M�1L

◆�1

�
(s,t)

(s, t) ds dt d↵.

The obvious next step is to extend the range of integration so the expression becomes

ˆ
1

0

ˆ
1

0

ˆ
1

0

✓

↵I+ �2

⌧2
M�1L

◆�1

�
(s,t)

(s, t) ds dt d↵.

When the number of observations is large, this will make little di↵erence, but for smaller datasets the
di↵erence (that E

ij

has zero’s along the boundary and �
(s,t)

does not share this characteristic) will be
noticeable. Looking closer at what has happened, one realize that the above approximation is in fact
of log det⌅.

The di↵erential operator ↵I+ �

2

⌧

2 M�1L is invertible, so if we denote its Greens function by G
↵

we have
that

✓

↵I+ �2

⌧2
M�1L

◆�1

�
(s,t)

(s, t) =

ˆ
1

0

ˆ
1

0

G
↵

((s, t), (v, w))�
(s,t)

(s, t) dv dw

= G
↵

((s, t), (s, t))

so we have the following approximation

log det⌅ ⇡
ˆ

1

0

ˆ
1

0

ˆ
1

0

G
↵

((s, t), (s, t)) ds dt d↵.

If one supposes that G satisfies Dirichlet boundary conditions, ⌅ will have block structure with zero
boundaries on the blocks (plus some ones on the diagonal.) Calculating the determinant of ⌅ iteratively
using the Laplace expansion and rules for determinants of block diagonal matrices, one easily realize
that

det⌅ = det⌅,

so in the case of Dirichlet boundary conditions the above approximation works well even for low obser-
vation numbers. If G does not satisfy Dirichlet boundary conditions, one can think of ⌅ as being ⌅ for
a problem with (n

1

� 2)(n
2

� 2) observations. Going through the approximation procedure we get that

log det⌅ ⇡
ˆ

1

0

ˆ
1

0

ˆ
1

0

G⇤
↵

((s, t), (s, t)) ds dt d↵.

where G⇤
↵

denotes the Greens function corresponding to the di↵erential operator

�2

⌧2
M�1

⇤ L + ↵I

where M⇤f = (n
1

� 1)(n
2

� 1)f .

To conclude, in the general case we approximate the negative log likelihood ˆ̀
y

(�2, ⌧2) by

ˆ̀
y

(�2, ⌧2) =
1

2

ˆ
1

0

ˆ
1

0

ˆ
1

0

G⇤
↵

((s, t), (s, t)) ds dt d↵+
n
1

n
2

2
log �2

+
1

2�2

n

y
ij

o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

(5.7)

44 CHAPTER 5. APPROXIMATIONS

and in the case of Dirichlet boundary conditions we use the approximation

ˆ̀
y

(�2, ⌧2) =
1

2

ˆ
1

0

ˆ
1

0

ˆ
1

0

G
↵

((s, t), (s, t)) ds dt d↵+
n
1

n
2

2
log �2

+
1

2�2

n

y
ij

o>

(i,j)

n

y
ij

� bE [x(s
i

, t
j

) | y]
o

(i,j)

. (5.8)

chapter 6

CHAPTER 5 IN PRACTICE

Example 6.1. To approximate the determinant as done in the previous section when L = (��)`+"I,
we have to find the Green’s function corresponding to

�2

⌧2
M�1

⇤ L + ↵I = �2

⌧2
M�1

⇤

✓

L +
↵⌧2

�2

M⇤

◆

,

which is ⌧

2

�

2 M⇤ times the Green’s function for

(��)` +

✓

"+
↵⌧2

�2

M⇤

◆

I,

but the corresponding Green’s function G has already been found in Example 3.7 for both Dirichlet and
Neumann boundary conditions, and so the Dirichlet Green’s function becomes

G⇤
↵

((s, t), (v, w)) =
⌧2

�2

M⇤

1
X

n=1

1
X

m=1

4

⇡2`(n2 +m2)` + "+ ↵⌧

2
(n1�1)(n2�1)

�

2

⇥ sin(n⇡s) sin(m⇡t) sin(n⇡v) sin(m⇡w)

and for the Neumann problem it becomes

G⇤
↵

((s, t), (v, w)) =
⌧2

�2

M⇤

1
X

n=1

1
X

m=1

4

⇡2`(n2 +m2)` + "+ ↵⌧

2
(n1�1)(n2�1)

�

2

⇥ cos(n⇡s) cos(m⇡t) cos(n⇡v) cos(m⇡w).

We need to calculate the triple integral

ˆ
1

0

ˆ
1

0

ˆ
1

0

G⇤
↵

((s, t), (s, t)) ds dt d↵.

If ` � 2 the Green’s function becomes integrable on the diagonal, and for both the Dirichlet problem
and the Neumann problem one obtains that

ˆ
1

0

ˆ
1

0

G⇤
↵

((s, t)(s, t)) ds dt =
⌧2

�2

M⇤

1
X

n=1

1
X

m=1

1

⇡2`(n2 +m2)` + "+ ↵⌧

2
(n1�1)(n2�1)

�

2

.

Performing the final integration it is obtained that

ˆ
1

0

ˆ
1

0

ˆ
1

0

G⇤
↵

((s, t)(s, t)) ds dt d↵ =
⌧2

�2

M⇤

1
X

n=1

1
X

m=1

ˆ
1

0

1

⇡2`(n2 +m2)` + "+ ↵⌧

2
(n1�1)(n2�1)

�

2

d↵

=
1
X

n=1

1
X

m=1

log

✓

1 +
⌧2

�2

(n
1

� 1)(n
2

� 1)

(⇡2`(n2 +m2)` + ")

◆

. (6.1)

The above expression is clearly convergent for all " � 0, as the fundamental inequality of the logarithm
gives that

log

✓

1 +
⌧2

�2

(n
1

� 1)(n
2

� 1)

(⇡2`(n2 +m2)` + ")

◆

 ⌧2

�2

(n
1

� 1)(n
2

� 1)

(⇡2`(n2 +m2)` + ")
.

45

46 CHAPTER 6. CHAPTER 5 IN PRACTICE

The role of " in (6.1) is negligible compared to the other parameters, if it is chosen small, and in actual
computations one can safely use " = 0.

The specific approximation for Dirichlet boundary conditions becomes

1
X

n=1

1
X

m=1

log

✓

1 +
⌧2

�2

(n
1

+ 1)(n
2

+ 1)

(⇡2`(n2 +m2)` + ")

◆

. (6.2)

�

Example 6.2. Now let us move to the conditional expectation approximation bE [x | y]. With the choice
L = (��)` + "I we have that

bE [x | y] (s, t) = ⌧2

�2

M

✓

(��)` +

✓

"+
⌧2

�2

M

◆

I
◆�1

E
y

(s, t).

For Dirichlet boundary conditions we get that
⇣

(��)` +
⇣

"+ ⌧

2

�

2 M
⌘

I
⌘�1

E
y

(s, t) equals

1
X

n=1

1
X

n=1

4

⇡2`(n2 +m2)` + "+ ⌧

2

�

2 (n1

+ 1)(n
2

+ 1)

⇥
ˆ

1

0

ˆ
1

0

sin(n⇡s) sin(m⇡t) sin(n⇡v) sin(m⇡w)E
y

(v, w) dv dw.

Since E
y

(· , w) is linear on the segments [s
i

, s
i+1

] for 0 i n
1

there exist a and b (functions of i and
j) such that

ˆ
1

0

sin(n⇡v)E
y

(v, w) dv =
n1
X

i=0

ˆ
si+1

si

sin(n⇡v)E
y

(v, w) dv

=
n1
X

i=0

ˆ
si+1

si

sin(n⇡v)(a(v � s
i

) + b) dv

=
n1
X

i=0

✓

a

n2⇡2

(sin(n⇡s
i+1

)� sin(n⇡s
i

))� a

n⇡
(s

i+1

� s
i

) cos(n⇡s
i+1

)

� b

n⇡
(cos(n⇡s

i+1

)� cos(n⇡s
i

))

◆

.

The line between (s
i

, t
j

) and (s
i

, t
j+1

) is given by

a
1

(w � t
j

) + b
1

=
y
i,j+1

� y
ij

t
j+1

� t
j

(w � t
j

) + y
ij

and between (s
i+1

, t
j

) and (s
i+1

, t
j+1

) it is given by

a
2

(w � t
j

) + b
2

=
y
i+1,j+1

� y
i+1,j

t
j+1

� t
j

(w � t
j

) + y
i+1,j

.

From this we have that if w 2 [t
j

, t
j+1

] then

a =
a
2

(w � t
j

) + b
2

� a
1

(w � t
j

)� b
1

s
i+1

� s
i

=
(a

2

� a
1

)(w � t
j

) + b
2

� b
1

s
i+1

� s
i

and
b = a

1

(w � t
j

) + b
1

.

47

We have that

ˆ
1

0

ˆ
1

0

sin(n⇡v) sin(m⇡w)E
y

(v, w) dv dw

=
n2
X

j=0

n1
X

i=0

ˆ
tj+1

tj

✓

a

n2⇡2

(sin(n⇡s
i+1

)� sin(n⇡s
i

))� a

n⇡
(s

i+1

� s
i

) cos(n⇡s
i+1

)

� b

n⇡
(cos(n⇡s

i+1

)� cos(n⇡s
i

))

◆

sin(m⇡w) dw,

where the integral of the a terms
´
tj+1

tj
a sin(m⇡w) dw can be computed as

1

s
i+1

� s
i

ˆ
tj+1

tj

((a
2

� a
1

)(w � t
j

) + b
2

� b
1

) sin(m⇡w) dw

=
1

s
i+1

� s
i

✓

a
2

� a
1

m2⇡2

(sin(m⇡t
j+1

)� sin(m⇡t
j

))� (a
2

� a
1

)(t
j+1

� t
j

)

m⇡
cos(m⇡t

j+1

)

�b
2

� b
1

m⇡
(cos(m⇡t

j+1

)� cos(m⇡t
j

))

◆

.

For the b term we have that
´
tj+1

tj
b sin(m⇡w) dw equals

ˆ
tj+1

tj

(a
1

(w � t
j

) + b
1

) sin(m⇡w) dw

=

✓

a
1

m2⇡2

(sin(m⇡t
j+1

)� sin(m⇡t
j

))� a
1

(t
j+1

� t
j

)

m⇡
cos(m⇡t

j+1

)

� b
1

m⇡
(cos(m⇡t

j+1

)� cos(m⇡t
j

))

◆

.

So (prepare for the horror) we have that

bE [x | y] (s, t) = ⌧2

�2

1
X

n=1

1
X

m=1

4(n
1

+ 1)(n
2

+ 1)

⇡2`(n2 +m2)` + "+ ⌧

2

�

2 (n1

+ 1)(n
2

+ 1)
sin(n⇡s) sin(m⇡t)

⇥
n2
X

j=0

n1
X

i=0

1

s
i+1

� s
i

✓

a
2

� a
1

m2⇡2

(sin(m⇡t
j+1

)� sin(m⇡t
j

))

� (a
2

� a
1

)(t
j+1

� t
j

)

m⇡
cos(m⇡t

j+1

)� b
2

� b
1

m⇡
(cos(m⇡t

j+1

)� cos(m⇡t
j

))

◆

⇥
✓

1

n2⇡2

(sin(n⇡s
i+1

)� sin(n⇡s
i

))� 1

n⇡
(s

i+1

� s
i

) cos(n⇡s
i+1

)

◆

�
✓

a
1

m2⇡2

(sin(m⇡t
j+1

)� sin(m⇡t
j

))� a
1

(t
j+1

� t
j

)

m⇡
cos(m⇡t

j+1

)

� b
1

m⇡
(cos(m⇡t

j+1

)� cos(m⇡t
j

))

◆

1

n⇡
(cos(n⇡s

i+1

)� cos(n⇡s
i

))

!

.

48 CHAPTER 6. CHAPTER 5 IN PRACTICE

With the notation

c
i

(n) = cos(n⇡s
i+1

)� cos(m⇡s
i

) = �2 sin

✓

n⇡

2(n
1

+ 1)

◆

sin

✓

n⇡(2i+ 1)

2(n
1

+ 1)

◆

,

c
j

(m) = cos(m⇡t
j+1

)� cos(m⇡t
j

) = �2 sin

✓

m⇡

2(n
2

+ 1)

◆

sin

✓

m⇡(2j + 1)

2(n
2

+ 1)

◆

,

sc
i

(n) =
n
1

+ 1

n⇡

�

sin(n⇡s
i+1

)� sin(n⇡s
i

)
�

� cos(n⇡s
i+1

),

sc
j

(m) =
n
2

+ 1

m⇡

�

sin(m⇡t
j+1

)� sin(m⇡t
j

)
�

� cos(m⇡t
j+1

),

it is obtained (with some calculations) that

bE [x | y] (s, t) = ⌧2

�2

1
X

n=1

1
X

m=1

4(n
1

+ 1)(n
2

+ 1)

⇡2`(n2 +m2)` + "+ ⌧

2

�

2 (n1

+ 1)(n
2

+ 1)
sin(n⇡s) sin(m⇡t)

⇥ 1

nm⇡2

n2
X

j=0

n1
X

i=0

(y
i+1,j+1

� y
i+1,j

)sc
i

(n)sc
j

(m)� (y
i,j+1

� y
ij

)(sc
i

(n) + c
i

(n))sc
j

(m)

�(y
i+1,j

� y
ij

)c
j

(m)sc
i

(n) + y
ij

c
i

(n)c
j

(m)

!

. (6.3)

For Neumann boundary conditions the expression is

bE [x | y] (s, t) = ⌧2

�2

1
X

n=1

1
X

m=1

4(n
1

+ 1)(n
2

+ 1)

⇡2`(n2 +m2)` + "+ ⌧

2

�

2 (n1

+ 1)(n
2

+ 1)
sin(n⇡s) sin(m⇡t)

⇥ 1

nm⇡2

n2
X

j=0

n1
X

i=0

(y
i+1,j+1

� y
i+1,j

)cs
i

(n)cs
j

(m)� (y
i,j+1

� y
ij

)(cs(n)� s
i

(n))cs
j

(m)

+(y
i+1,j

� y
ij

)s
j

(m)cs
i

(n) + y
ij

s
i

(n)s
j

(m)

!

(6.4)

where

s
i

(n) = sin(n⇡s
i+1

)� sin(m⇡s
i

) = 2 sin

✓

n⇡

2(n
1

+ 1)

◆

cos

✓

n⇡(2i+ 1)

2(n
1

+ 1)

◆

,

s
j

(m) = sin(m⇡t
j+1

)� sin(m⇡t
j

) = 2 sin

✓

m⇡

2(n
2

+ 1)

◆

cos

✓

m⇡(2j + 1)

2(n
2

+ 1)

◆

,

cs
i

(n) =
n
1

+ 1

n⇡

�

cos(n⇡s
i+1

)� cos(n⇡s
i

)
�

+ sin(n⇡s
i+1

),

cs
j

(m) =
n
2

+ 1

m⇡

�

cos(m⇡t
j+1

)� cos(m⇡t
j

)
�

+ sin(m⇡t
j+1

).

Note:

bE [x | y] is only implemented with the Dirichlet boundary conditions in the laplacesmooth

package. �

Example 6.3. The conditional residuals in the model are given by

y
ij

� bE [x(s
i

, t
j

) | y] = bE [y
ij

� x(s
i

, t
j

) | y] .

49

We have that

Cov
h

bE [y
ij

� x(s
i

, t
j

) | y] , bE [y
kl

� x(s
k

, t
l

) | y]
i

= Cov
h

y
ij

� x(s
i

, t
j

), y
kl

� x(s
k

, t
l

)
i

� E
h

Cov [y
ij

� x(s
i

, t
j

), y
kl

� x(s
k

, t
l

)| y]
i

= �21
(i,j)=(k,l)

� Cov
h

x(s
i

, t
j

), x(s
k

, t
l

)
�

�

�

y
i

,

where the law of total covariance has been used, as well as the fact that conditional covariances given
the observation y does not depend on y in Gaussian models. This covariance can be approximated by

�21
(i,j)=(k,l)

� bV [x | y] �
(sk,tl)

(s
i

, t
j

).

For L = (��)` + "I we have that

bV [x | y] = ⌧2
✓

(��)` +

✓

"+
⌧2

�2

M

◆

I
◆�1

,

so for Dirichlet boundary conditions we have that

bV [x | y] �
(sk,tl)

(s
i

, t
j

) = ⌧2
1
X

n=1

1
X

m=1

4

⇡2`(n2 +m2)` + "+ ⌧

2
(n1+1)(n2+1)

�

2

⇥ sin(n⇡s
i

) sin(m⇡t
j

) sin(n⇡s
k

) sin(m⇡t
l

). (6.5)

The approximation for Neumann boundary conditions is similar.

We can now introduce the approximated two-dimensional autocovariance function given by

b�(n,m) = �21
(n,m)=(0,0)

� 1

(n
1

� n)(n
2

�m)

n1�n

X

k=1

n2�m

X

l=1

bV [x | y] �
(sk,tl)

(s
k+n

, t
l+m

) (6.6)

and the associated two-dimensional autocorrelation function

b⇢(n,m) =
b�(n,m)

b�(0, 0)
. (6.7)

These can be compared to their empirical counterparts to do model validation. The empirical auto
covariance can be defined by

b

b�(n,m) =
1

(n
1

� n)(n
2

�m)

⇥
n1�n

X

k=1

n2�m

X

l=1

⇣

y
kl

� bE [x(s
k

, t
l

) | y]� r
⌘⇣

y
k+n,l+m

� bE [x(s
k+n

, t
l+m

) | y]� r
⌘

, (6.8)

where r is an estimate of the overall expectation of y � bE [x | y], it could for example be the average
value of y � bE [x | y] in all observation points. �

We now have all the ingredients for performing functional data analysis using the approximations, in
the next example we will consider the quality of the approximations.

Example 6.4. We will now consider the benefits and quality of the approximations introduced in the
previous chapter. We will assume that L = (��)` with suitable boundary conditions. As previously
mentioned

log det⌃ = log det
n

⌧

2/�2G((s
i

, t
j

)(s
k

, t
l

)) + 1
(i,j)=(k,l)

o

(i,j),(k,l)

+ n
1

n
2

log �2.

50 CHAPTER 6. CHAPTER 5 IN PRACTICE

We will compare log det⌃ � n
1

n
2

log �2 to the approximations (6.1) and (6.2), which are all functions
of ⌧

2/�2. In Figure 6.1 log det⌃ � n
1

n
2

log �2 is plotted as a function of ⌧

2/�2 for both Dirichlet and
Neumann boundary conditions and the approximations are also plotted. The approximation error can
be found in Figure 6.2. It is seen that the two approximations are almost indistinguishable from the
exact expression already when the number of observations is 100. The convergence seems a bit faster
for higher values of `, and it is seen that for ` = 3 the approximation for Dirichlet boundary conditions
is much better than the corresponding approximation for the Neumann boundary condition.

0 10 20 30 40

0
2

4
6

8

log det⌃� n
1

n
2

log �2

n
1

= n
2

= 10, ` = 2

⌧

2/�2

0 10 20 30 40

5
10

15
20

log det⌃� n
1

n
2

log �2

n
1

= n
2

= 20, ` = 2

⌧

2/�2

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

log det⌃� n
1

n
2

log �2

n
1

= n
2

= 10, ` = 3

⌧

2/�2

0 500 1000 1500 2000

2
4

6
8

10

log det⌃� n
1

n
2

log �2

n
1

= n
2

= 20, ` = 3

⌧

2/�2

Dirichlet
Dirichlet app.
Neumann
Approximation

Figure 6.1: Comparisons of the exact and approximated log-determinant as functions of ⌧

2/�2.

Determinant computations are typically implemented with time complexity O(n3) where n is the height
or length of the matrix (i.e. n

1

n
2

), but the approximations requires only a constant time computation.
In Figure 6.3 the computation times are compared, and it is clear that the approximation (green) is an
amazing improvement.

Now let us move to the conditional expectation E [x | y] and the corresponding approximation bE [x | y].
The computation of E [x | y] in every observation point requires a matrix multiplication of two n

1

n
2

⇥
n
1

n
2

matrices, a lower order matrix computation and one inversion of a n
1

n
2

⇥n
1

n
2

matrix. Although
asymptotically faster algorithms exist the two dominating operations are typically both implemented
to have running time O(n3

1

n3

2

), which is then the overall running time of the computation. bE [x | y] on
the other hand can be implemented to run in linear time O(n

1

n
2

). In Figure 6.4 a comparison of the
running time of the two expression can be found. In all fairness the matrix computations done in the

51

0 10 20 30 40

-0
.0
5

-0
.0
3

-0
.0
1

⌧

2/�2

log det⌃ approximation error
n
1

= n
2

= 10, ` = 2

0 10 20 30 40

-0
.0
5

-0
.0
3

-0
.0
1

⌧

2/�2

log det⌃ approximation error
n
1

= n
2

= 20, ` = 2

0 500 1000 1500 2000

-0
.0
20

-0
.0
10

0.
00
0

⌧

2/�2

log det⌃ approximation error
n
1

= n
2

= 10, ` = 3

0 500 1000 1500 2000

-0
.0
20

-0
.0
10

0.
00
0

⌧

2/�2

log det⌃ approximation error
n
1

= n
2

= 20, ` = 3

Dirichlet
Neumann

Figure 6.2: Approximation error from Figure 6.1.

calculation of E [x | y] is implemented to take use of multithreading, and for the larger matrices the
actual experienced running time will be divided by the number of cores in the CPU. The quality of the
corresponding approximation will be reviewed in the next example.
One aspect has been left out so far. For the two previous types of exact computations the construction
of a covariance matrix is needed. Of course this is a one time investment, but actually it can be a rather
costly one as can be seen in Figure 6.5. It is not only costly to construct a covariance matrix, but it
also has storage demand O(n2

1

n2

2

), which can be problematic for very big images. This just speaks in
favor of using the approximations.
Of course the implementation found in the laplacesmooth package is not optimal, but it somewhat
optimized. A number of methods have been implemented in C which has decreased running times for
some functions up to a factor 150. The speed of the various matrix computations could be decreased
further by using e.g. QR decomposition. A further speed increase in the range of a factor 10-100 could
probably be achieved by doing the computations on graphics processing units rather than on CPUs,
since these are specially designed for matrix algebra. Even with these optimizations it is still infeasible
to do exact smoothing on pictures in the megapixel range, and the presented approximations should be
a long-awaited step forward in the realm of doing statistics on images.

52 CHAPTER 6. CHAPTER 5 IN PRACTICE

500 1000 1500 2000 2500

0.
0

1.
0

2.
0

3.
0

Number of observations

U
se
r
ti
m
e
(s
ec
)

Computation time of log det⌃� n
1

n
2

log �2

and approximation (200 replications)

Figure 6.3: Computation time of log det⌃�n
1

n
2

log �2 (black) compared to one of the approximations
(6.1) (green). Values are averages of 200 replications.

0 500 1500 2500 3500

0
2

4
6

8

Number of observations

U
se
r
ti
m
e
(s
ec
)

Computation time of E [x | y] and bE [x | y]
computed in every observation point

(200 replications)

Figure 6.4: Computation time of E [x | y] (black) compared to the approximation bE [x | y] (green).
Values are averages of 200 replications.

53

0 500 1500 2500 3500

0
10
0

30
0

50
0

Number of observations

U
se
r
ti
m
e
(s
ec
)

Construction time for covariance matrices
Average of 5 replications

Figure 6.5: Construction time of a covariance matrix.

�

Example 6.5. We consider again the noisy image from Example 4.1

y
ij

= ✓(s
i

, t
j

) + "
ij

, i, j = 1, . . . , 21

where
✓(s, t) = 70s2(s� 1)t(t� 1)

and the "
ij

’s are independent and identically normal distributed random variables with standard devia-
tion 0.5. Plots of ✓ and the noisy observation can be found in Figure 4.1 in Example 4.1. A plot of ✓ can
also be found in Figure 6.6 on the next page. We will focus on the performance of the approximations
introduced in the previous chapter. The infinite double series occurring in all approximations has been
cut o↵ at each sums 20th term in the following. Using the approximated likelihood the parameters are
estimated for the observation from Example 4.1, and can be found in the table below.

` �̂ ⌧̂
2 0.5037203 7.003465
3 0.5101308 58.34387
4 0.5113562 449.5905

Figure 6.6 holds a plot of the approximated smooths for ` = 2, 3, 4.

The parameter estimates and smooths are produced with the laplacesmooth package using the code
in Listing 6.1 where pic refers to the matrix of observations

Listing 6.1: Approximated smoothing an image and plotting the smooth

size <- dim(pic)

est <- appestimate(pic , order = 2)

persp(x = steps , y = steps , z = ceamatrix(pic , est$par [1], est$par [2], order = 2))

54 CHAPTER 6. CHAPTER 5 IN PRACTICE

s

t

` = 2

s

t

` = 3

s

t

` = 4

s

t

✓

Figure 6.6: The approximated smooths of the observed image for di↵erent values of ` and the true
image.

The partial derivatives of bE [x | y] are easily calculated from the formula (6.3) and the corresponding
estimates can be found in Figure 6.7 and 6.8. It is seen that even though the number of observations
is very low compared to standard data sizes in image analysis, the smooths and partial derivatives are
almost as good as the ones in Example 4.1, with the only di↵erence noticeable to the naked eye being
a slightly worse estimate of @

t

✓ when ` = 4.

Considering the absolute di↵erence between the true and the estimated picture, we get the values in
the table below

` @ Absolute di↵erence Absolute di↵erence per observation
2 � 46.12313 0.1045876
3 � 44.90465 0.1018246
4 � 44.64823 0.1012432
2 @

s

432.1687 0.9799744
3 @

s

362.8343 0.8227535
4 @

s

348.2625 0.7897109
2 @

t

423.5122 0.9603451
3 @

t

375.8897 0.8523576
4 @

t

365.572 0.8289615

These numbers are somewhat worse than the corresponding numbers in Example 4.1, but this is not

55

alarming. The number of observations is quite small in this example, and results are better when the
number of observations is higher. Also, the profit in terms of reduced computation time is really worth
to notice. Looking an identical example with 100⇥ 100 observations instead of the 21⇥ 21, one get the
absolute di↵erences in the below table

` @ Absolute di↵erence Absolute di↵erence per observation
2 � 314.4681 0.03144681
3 � 277.3654 0.02773654
4 � 250.4005 0.02504005
2 @

s

5652.123 0.5652123
3 @

s

3898.208 0.3898208
4 @

s

2978.498 0.2978498
2 @

t

4430.046 0.4430046
3 @

t

2652.161 0.2652161
4 @

t

1799.494 0.1799494

These numbers are considerably better, although the improvement measured on the partial derivatives
is not as impressive as on the image itself.

s
t

@
s

bE [x | y] , ` = 2

s

t

@
s

bE [x | y] , ` = 3

s

t

@
s

bE [x | y] , ` = 4

s

t

@
s

✓

Figure 6.7: The partial derivatives in the s direction of the approximated smooths for di↵erent values
of ` and the true partial derivative of ✓.

56 CHAPTER 6. CHAPTER 5 IN PRACTICE

s

t

@
t

bE [x | y] , ` = 2

s

t

@
t

bE [x | y] , ` = 3

s

t

@
t

bE [x | y] , ` = 4

s

t

@
t

✓

Figure 6.8: The partial derivatives in the t direction of the approximated smooths for di↵erent values
of ` and the true partial derivative of ✓.

�

Example 6.6. For the final example of this chapter, we will look at the autocovariance functions. We
simulate a 40⇥ 40 Gaussian image x with covariance function ⌧2G, where G is the Green’s function for
the biharmonic operator subject to Dirichlet boundary conditions, and add standard normal distributed
noise to the image. A simulated image where ⌧ = 100 is found in Figure 6.9.

The smoothing is done in the approximated framework, and the parameter estimates �̂ and ⌧̂ are
1.197052 and 77.875697 respectively. The smooth and residuals can be found in Figure 6.10

We can now take a look at the theoretical and the empirical autocovariance images given by (6.6) and
(6.8) respectively, which can be found in Figure 6.11. One notices that the empirical autocovariance
becomes quite rough for n and m large. This is natural since the estimates of the covariances are based
on fewer and fewer observations as n and m increase, and one should only compare the theoretical and
empirical functions for n and m reasonably small. Finally it should be noted that the estimation of the
autocovariance function becomes much better for larger numbers of observations.

57

s

t

s
t

Figure 6.9: The Gaussian process x (left) and the process plus standard normal distributed noise.

s

t

s

t

Figure 6.10: The smooth of the image from Figure 6.9 (left) and the corresponding residuals.

n

m

n

m

Figure 6.11: Theoretical autocovariance (left) and empirical for n = 1, . . . , 39 and m = 1, . . . , 39.

�

chapter 7

APPLICATIONS TO 2D ELECTROPHORESIS IMAGES

Two-dimensional (gel) electrophoresis is a technique used for separating proteins, DNA or RNA by
two properties. The two properties could be isoelectric point and protein mass, but other choices are
possible. Two segments from di↵erent 2D electrophoresis images of pig tissue (Lametsch et al. 2006)
can be found in Figure 7.1. The chosen regions are nice in the sense that there are no extreme errors
(e.g. black lines or thick white lines) as often seen in this kind of images. The images are quite noisy
and there is for example an obvious error in the lower right corner of the left picture. A problem in the
analysis of such images is determining wether something is in fact a protein spot or if it is just noise.
That problem will be addressed in this chapter.

Figure 7.1: 400⇥ 400 pixel subregions of two 2D electrophoresis images. The protein is from pork.

The images in Figure 7.1 are plotted as surfaces in Figure 7.2. It is clear that the surfaces are not
Gaussian, so something else should probably be done. We propose the model of the image y with N
spots to be

y
ij

=
N

X

k=1

✓
k

(s
i

, t
j

) + x(s
i

, t
j

) + "
ij

(7.1)

where ✓
k

models spot k, x is Gaussian with covariance ⌧2G and the "
ij

’s are independent normal
distributed variables with zero mean and variance �2. The obvious choice of ✓

k

that comes to mind is
a Gaussian function

✓
k

(s, t) = �
k

exp

✓

� (s� µ1

k

)2

2(�1

k

)2
� (t� µ2

k

)2

2(�2

k

)2

◆

where (µ1

k

, µ2

k

) 2 R2 describes the center of the spot, (�1

k

,�2

k

) 2 (0,1)2 describes the spread, and
�
k

2 [0,1) is height of the peak.

The idea in the model is to use classical blob detection methods in image analysis to determine all pos-
sible spots, and their respective five parameters, and then model the residual image y

ij

�
P

N

k=1

✓
k

(s
i

, t
j

)
with the Gaussian model used in the previous chapters. This will inevitably lead to overfitting, where
noise is modelled as spots, but one strength of this model is that it allows for testing of the hypothesis
H

k

: �
k

= 0, for which one can do a likelihood ratio test. Testing the hypotheses of the form H
k

will
inherently lead to multiple testing problems, and some sort of adjustment of the p-values will be needed.

Looking at the images in Figure 7.1, one realizes that there are some problems in model (7.1). First
of all the spots might be better described by something else than Gaussian functions, but more impor-
tantly there are some problems with using the Gaussian process x to model the residual. The correlated

59

60 CHAPTER 7. APPLICATIONS TO 2D ELECTROPHORESIS IMAGES

Figure 7.2: The images from Figure 7.1 plotted as surfaces.

noise seems to be particularly strong around the protein spots and on vertical or horizontal lines with
big/many spots, so the correlated noise is somewhat dependent on the protein spots.

We will leave the modelling of protein spots to people who are interested in that kind of thing, and
just consider the left image in Figures 7.1 in its purity, i.e. model (7.1) with all �

k

= 0. If we use the
Green’s function for the biharmonic operator �� as the covariance G, we can estimate � and ⌧ using
the approximated likelihood with Dirichlet boundary conditions. This is of course somewhat silly as
the images are clearly not Gaussian. Also there is a small problem with using Dirichlet boundary con-
ditions, as these are only partly satisfied, but this will be ignored for now. Unless otherwise mentioned,
the cuto↵ of the double series in the approximations has been set to 40. A plot of the negative log
likelihood function can be found In Figure 7.3.

�

⌧

Approximated likelihood function
⌧ = 0, . . . , 20,

� = 0.016, . . . , 0.300

�

⌧

Approximated likelihood function
⌧ = 10, . . . , 14,

� = 0.028, . . . , 0.122

Figure 7.3: The likelihood function for the left image in Figure 7.1.

61

The maximum likelihood estimate of � is 0.0465678 and for ⌧ it is 11.9800299. The corresponding
smooth can be found in Figure 7.4. As one can see the smooth describes the original image well. The
two most noticeable di↵erences between the real image and the smooth are that the spikes corresponding
to the spots does not have the original flat tops (due to censoring in the dynamic range of the original
image) in the smooth, and that the noise between the spots has been filtered away. The residual image
can be found in Figure 7.5.

Figure 7.4: The smooths of the left image from Figure 7.1.

Figure 7.5: The residual y� bE [y |x], i.e. the left images in Figures 7.1 and 7.2 with the corresponding
images from Figure 7.4 subtracted.

One very interesting feature of the smooth is the structure of the surface between the spikes, which is
predominantly ridges parallel to the axes – a feature well known from the Brownian sheet. This struc-
ture is also noticeable in the original image, but as one can see in the residual image this structure might

62 CHAPTER 7. APPLICATIONS TO 2D ELECTROPHORESIS IMAGES

be a bit exaggerated in the smooth – especially anlong one of the axes. In fact these axis parallelities
are a feature of the electrophoresis image, as the separation mechanisms in the electrophoresis process
are done one at the time, and the protein spots will then leave a traces parallel to the axes. This also
explains why the structure parallel to the axes seem to be more dominant along one of the axes. It is
clear (and not surprising) that there are some problems with the residuals. A normal QQ plot of the
residuals can be found in Figure 7.6, which clearly shows that the residuals are not normal distributed.
The residual plot tell us a number of interesting things. First of all the green points corresponding to
observations within 5 pixels from the border lie reasonably well, although there are some problems with
both positive and negative residuals due to small protein spots partly lying on the border. With fits
around 0 and 0.2 we also observe some quite extreme residuals. These are due to one of the bigger spots
which is quite close to the border, and should disappear with a proper modelling of the corresponding
spot. Finally there is a very noticable line structure for fitted values between 0.6 and 1.0. What this
line tells us is that the smooth produces spikes that are more narrow and sometimes slightly higher than
the observed. This is probably caused by the previously mentioned censoring in the dynamic range of
the image, and this is certainly a problem that should disappear with proper modelling of the protein
spots. If these three problems were dealt with, one could imagine that the residuals became somewhat
reasonable.

Figure 7.6: Normal QQ plot of the residuals from Figure 7.5 (left) and residuals plotted against the
fitted values. Green points corresponds to observations within 5 pixels from the border.

Let us finally look at the autocovariance function. In Figure 7.7 a plot of the autocovariance function
under the model and its empirical counterpart can be found (computed using (6.6) with the maximum
likelihood estimates as parameters and (6.8) respectively.) The two plots are very di↵erent. First
of all they are on di↵erent scales, where the theoretical autocovariance takes values in the interval
(�5 · 10�6, 10�6) for n,m > 0, the empirical takes values in the interval (�2.5 · 10�4, 3 · 10�4) for
1 n,m 200. The value for n = m = 0 is 0.001957549 for the theoretical image, and in the empirical
image it is 0.0004246596, again quite a di↵erence. These di↵erences are caused by the residual image
clearly not being centered Gaussian with the correct covariance. One should notice that the ripple in
the two images are not of the same nature. In the theoretical image the ripple is mainly due to the
approximation error in the double sine series, that is heavily amplified. In the empirical autocovariance
image the ripple along the n-axis of the empirical autocovariance image is caused by the corresponding

63

ripple in the residual image. It is hard to say how much better the residuals would be with a proper
modelling, but it is sure that the modelling of tops would help on some of the observed problems.

Figure 7.7: Autocovariance image under the model (left) and observed autocovariance image, both
for n,m = 1, . . . , 399. The waves in the left autocovariance image are mainly due to an error in the
approximation process (the series in (6.6) were cut of at their 20th terms) that has been amplified.
As previously mentioned it is expected that the empirical autocovariance image has wild behaviour for
large values of n and m.

A transformation of the data might produce an even better correspondence between the data and the
proposed model. We will try a log-transformation. This model requires that we add a constant to the
new data, so it corresponds better with the Dirichlet boundary conditions. I.e. if z denotes the image
data, we will work on y = log(z) + c with c 2 R, where c is chosen such that the average deviation
from zero along the border is minimized. The log-transformed images can be seen in Figure 7.8 and the
corresponding (negative log) likelihood function can be found in Figure 7.9.

The maximum likelihood estimates of � and ⌧ are 0.1381845 and 40.3267746, and the corresponding
smooth can be found in Figure 7.10. The residuals which can be found in Figure 7.11 seem quite a bit
nicer than the ones in Figure 7.5. The normal QQ plot of the residuals and the plot of residuals against
fitted values in Figure 7.12 also seem a bit prettier than for the non-log-transformed images, but they
still su↵er from the same problems. The same is the case for the autocorrelation functions found in
Figure 7.13. One can still hope that proper modelling of the tops will solve the worst of these problems.

64 CHAPTER 7. APPLICATIONS TO 2D ELECTROPHORESIS IMAGES

Figure 7.8: The log-transformed version of the left electrophoresis image from Figures 7.1 and 7.2.

�

⌧

Approximated likelihood function
⌧ = 20, . . . , 60,

� = 0.02, . . . , 0.300

�

⌧

Approximated likelihood function
⌧ = 30, . . . , 50,

� = 0.06, . . . , 0.30

Figure 7.9: The likelihood function for the image in Figure 7.8.

65

Figure 7.10: The smooths of the image from Figure 7.8.

Figure 7.11: The residual y � bE [y |x], where y is the image in Figure 7.8 and bE [x | y] is the image
from Figure 7.10.

66 CHAPTER 7. APPLICATIONS TO 2D ELECTROPHORESIS IMAGES

Figure 7.12: Normal QQ plot of the residuals from Figure 7.9 (left) and residuals plotted against the
fitted values. Green points corresponds to observations within 5 pixels from the border.

Figure 7.13: Autocovariance image under the (log-transformed) model (left) and observed for n,m =
1, . . . , 399. The waves in the left autocovariance image are mainly due to an error in the approximation
process (the series in (6.6) were cut of at their 20th terms) that has been amplified.

chapter 8

FUTURE DIRECTIONS

The presented methods should be an interesting addition to the field of two-dimensional functional
data analysis. The results throughout this thesis are essentially dimensionless, and are easily gener-
alized to higher dimensions. This perhaps makes the results even more interesting, since the field of
multidimensional functional analysis is somewhat underdeveloped and needs computationally e�cient
and interpretable solutions (see e.g. Ramsay & Silverman (2005) Section 22.2.3.)

Another interesting addition would be to generalize the theory to handle multivariate images, as this
would make it possible to do functional data analysis on e.g. color images.

Below a number of specific things and choices in this thesis will be reviewed.

The idea to specify the image model in a Bayesian framework may be problematic. Especially if the
prior is improper in some sense. It is possible to specify alternative models and produce similar smooths
using these. Markussen (2013) specifies the model in a linear mixed e↵ects model framework and Wahba
(1978) specifies an equivalent model as a stochastic filtering problem. An interesting question is what
the e↵ect would be if one used alternative prior distributions in the estimation. It would especially be
interesting if one could use priors that had di↵erent continuity properties than the Gaussians. This
would result in di↵erent estimates, but the approximation methods, where calculations is moved to the
functional domain, should still be applicable.

The use of maximum likelihood estimation for the parameters can be criticized. Instead of using
maximum likelihood estimation on the prior distribution, one could perhaps develop an approximated
generalized cross validation method to estimate the parameters. This would allow for use of the approx-
imation in a setup that would please people with a stronger frequentist mindset. Another possibility
is to use e.g. leave-one-out cross validation. This would require that one looked at approximations for
non-equidistant observations, but only leaving one out would still result in closed form approximations.
In fact it should still be possible to do the approximations if the observations are not equidistantly
spaced, but the prettiness of the resulting formulae will su↵er.

Another important choice made in this thesis is the choice of using iterated Laplacians for the roughness
measure. Alternative roughness measures such as (@

s

@
t

)` could result in Green’s functions with much
better computational properties, and perhaps also more pleasing continuity properties.

The Green’s functions considered have been computed for function spaces subject to certain boundary
conditions. The two di↵erent types we have considered – Dirichlet and Neumann – are of course not the
only choices, nor are they always optimal. Dirichlet boundary conditions are easily interpretable and
result in “nice” covariance functions. For Neumann boundary conditions, the interpretation is that the
“inner flow” of the surface should continue at the boundary, but the boundary conditions give problems
in the corners where a discontinuity of the boundary conditions occurs. A solution to this could be to
find a Green’s function for “radial” Neumann conditions, i.e. where the conditions are not defined in
terms of the normal derivatives on the boundary, but rather the derivative in the the direction from
the center of the image. Such a Green’s function may be very hard to find, and an alternative is to
translate the boundary conditions to the outer circle of the square. Such a Green’s function should
be directly computable with some e↵ort. An alternative type of boundary conditions that we have
not considered is mixed boundary conditions, i.e. Dirichlet boundary conditions on some borders and
Neumann conditions on others. As long as two Neumann conditioned borders does not meet in a corner
this will fix the previously mentioned problem.

These and more things will be considered in future work by the author in collaboration with Bo
Markussen.

67

BIBLIOGRAPHY

Adler, R. J. & Taylor, J. E. (2007), Random fields and geometry, Springer.

Craven, P. & Wahba, G. (1978), ‘Smoothing noisy data with spline functions’, Numerische Mathematik
31(4), 377–403.

Dyn, N., Wahba, G. & Wong, W. (1979), ‘Smooth pycnophylactic interpolation for geographical regions:
Comment’, Journal of the American Statistical Association 74(367), 530–545.

Kimeldorf, G. S. & Wahba, G. (1970), ‘A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines’, The Annals of Mathematical Statistics 41(2), 495–502.

Kimeldorf, G. & Wahba, G. (1971), ‘Some results on Tchebyche�an spline functions’, Journal of Math-
ematical Analysis and Applications 33(1), 82–95.

Lametsch, R., Kristensen, L., Larsen, M. R., Therkildsen, M., Oksbjerg, N. & Ertbjerg, P. (2006),
‘Changes in the muscle proteome after compensatory growth in pigs’, Journal of animal science
84(4), 918–924.

Markussen, B. (2013), ‘Functional data analysis in an operator-based mixed-model framework’,
Bernoulli 19(1), 1–17.

Meinguet, J. (1979), ‘Multivariate interpolation at arbitrary points made simple’, Zeitschrift für ange-
wandte Mathematik und Physik 30(2), 292–304.

Melnikov, Y. A. (1999), Influence functions and matrices, CRC Press.

Nicholson, J. & Bergman, L. (1985), ‘On the e�cacy of the modal series representation for the green
functions of vibrating continuous structures’, Journal of Sound and Vibration 98, 299–304.

O’Sullivan, F. (1991), ‘Discretized Laplacian smoothing by Fourier methods’, Journal of the American
Statistical Association 86(415), 634–642.

R Core Team (2013), R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org/

Rakêt, L. L. & Markussen, B. (2014), ‘Approximate inference for spatial functional data on massively
parallel processors’, Computational Statistics & Data Analysis 72, 227 – 240.

Ramsay, J. O. & Silverman, B. W. (2005), Functional data analysis, second edn, Springer.

Wahba, G. (1978), ‘Improper priors, spline smoothing and the problem of guarding against model errors
in regression’, Journal of the Royal Statistical Society. Series B (Methodological) pp. 364–372.

Wahba, G. (1990), Spline models for observational data, Society for industrial and applied mathematics.

Wahba, G. & Wendelberger, J. (1980), ‘Some new mathematical methods for variational objective
analysis using splines and cross validation’, Monthly Weather Review 108, 1122.

69

	Contents
	Introduction
	Motivation
	Model

	Gaussian fields, Green's functions and splines
	Gaussian fields
	Green's functions
	Generalized splines

	Calculations and examples
	The Laplace operator
	Green's functions in practice
	Relation to other work

	Data examples
	Approximations
	Approximations of matrix computations

	Chapter 5 in practice
	Applications to 2D electrophoresis images
	Future directions
	Bibliography

