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Abstract:  Variational motion estimation techniques have improved tremendously in recent
years—both in terms of speed and accuracy. In this paper a method for optical flow driven
frame interpolation is proposed, where the optical flow is recovered from a TV-L! energy.
We first propose a number of modifications to the optical flow algorithm in order to improve
interpolation accuracy. We then move on and propose the inclusion of an additional symmetric
optical flow in a standard forward-backward frame interpolation scheme. We demonstrate that
the proposed method consistently outperforms interpolation using state of the art overlapped
block motion compensation and previous methods using TV-L! optical flow, with an average
improvement of more than 1 dB.
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1. Introduction

The problem of frame interpolation find uses in a number of fields, e.g. video post processing, restoration of historic
material, and video coding. For some applications the goal is to satisfy a viewer, in which case the main concern often
is that the results look good [1], rather than minimizing some error measure. Here we will consider the problem for
technical applications where error measures are more important than a crisp result. One of these types of application
is distributed video coding [2]. In video coding applications discrete methods like block matching has been used
very successfully, and variational motion estimation methods have largely been overlooked. One reason for this is
that optical flow fields are dense, and thus problematic to code. In distributed video coding, the source statistics are
exploited at decoder side, eliminating the problem of coding the flow field motion vectors. Such a setup makes it
possible to exploit the highly accurate motion estimates of modern optical flow methods [3].

2. TV-L' Optical Flow

Optical flow estimation concerns the determination of apparent (projected) motion. Given a sequence of temporally
indexed images I;, we want to estimate the optical flow v such that the motion matches the image sequence while still
maintaining sufficient regularity. Here we will consider a TV-L! energy for the optical flow estimation, which is given
by
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where the first term is a L' norm of the difference between Iy and the motion-compensated version of /;, and the second
term is a total variation (TV) regularization, which is to be understood as the integral over the Frobenius norm of the
derivative of v. This type of regularization will smooth the estimated motion while still allowing for sharp motion
boundaries. In order to efficiently minimize E we introduce two relaxations. First we linearize the data fidelity term
I (x+v) —Ip(x) = p(v)(x), where p is the first order Taylor approximation
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with vg the current estimate of v around x. We further relax E by introducing an auxiliary variable u that splits data
fidelity and regularization in two quadratically coupled energies:
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The above relaxation was first proposed by Zach et al. [4], and has a number of advantages, most notably that the two
problems can be solved pointwise which makes the solution very easy to implement on massively parallel processors
like graphics processing units (GPUs). We will not replicate the minimizing solutions to (3) and (4) here, but note
that (3) can easily be solved by the method presented in [4] in the case of grayscale images and in the general case of
vector valued images it can be solved by the method presented in [5]. The regularization energy (4) is minimized by
the projection method of Chambolle [6,7].

In order to improve interpolation quality we use a specialized coarse-to-fine pyramidal implementation of the above
algorithm (for more details on standard implementations refer to [5, 8]). We have 70 pyramid levels with a scaling
factor of 0.95, where each pyramid level is smoothed with a Gaussian with standard deviation @ before downscaling
to the coarser level. On each level we do 30 warps of first solving (3) and then solving (4) using 10 iterations of
the algorithm of Bresson [7], with A = 3 and 6 = 0.2, where in order to improve interpolation quality, p has been
weighted by the gradient magnitude ||V (x + v) +0.01|| (slightly shifted to avoid division by 0) in the minimization
of (3) [9]. Additional improvement of interpolation quality was found by applying a 3 x 3 median filter of the flow
after upscaling to the next pyramid level [10].

3. Frame Interpolation algorithm and results

We are interested in interpolating an in-between frame /;, using only the two surrounding frames /o and ;. We first
note that the optical flow algorithm presented in the previous section is asymmetric, since the (forward) flow estimated
from Iy to I; is not the same as the (backward) flow from I; to . In addition the forward flow will have a coordinate
system corresponding to the pixels in Ip and the backward flow follows the coordinate system given by the pixels in
11, so in order to use these flows to interpolate at pixel positions in /;/, we need to warp the flows [11-13] to match the
intermediate frame. This is done by assuming that the intermediate frame follows the estimated motion linearly, and
then defining the warped forward flow as the flow from 7y, to /;, which is approximated by
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where the round function rounds to nearest pixel. The warped backward flow is estimated similarly. There are problems
in the warping procedure, first multiple flow vectors may hit the same pixel round(x + 1/2v(x)) (typically occlusion),
which can be dealt with by choosing the vector with best data fidelity. A more serious problem is the problem of
dis-occlusion which causes holes in the warped flow. We will correct this by filling holes using an outside-in strategy,
however ideally one would reason about depth and occlusion in the interpolation procedure, which should give better
results [12].

With the warped flows, the straightforward approach for interpolation is to interpolate along the flow vectors,
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however, since we have discarded occlusion information by filling holes and clearing collisions, the warped forward
flow should minimize I (x + v}/z () + I (x— v}/z (x)), and vice versa for the backward flow. Even though the two
computed flows are symmetric around /), they will be different since they originated from asymmetric flows. We
propose to include a symmetric flow estimate which is calculated directly using the pixel positions of the unknown
frame /), to complement the two asymmetric flows. This flow veym is calculated using the reparametrization of (3)
suggested in [8, 14], which will also help in producing a more robust flow. With these three flows we can do the
interpolation as follows
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i.e. the interpolation is the average of the two surrounded frames warped to the center using the three different flows.

We will evaluate (7) which we will denote 30F on the test sequences (QCIF, 15 fps) Coastguard QP=26, Foreman
QP=25, Hall QP=24 and Soccer QP=25, where we interpolate every other frame and compare to the overlapped block
motion compensation (OBMC) method from [3] and the TV-L! optical flow (OF) method from [2]. The results can be
found in Table 1 where we see that the proposed method outperforms OBMC and OF on all sequence, with an average
increase in PSNR of 1.26 dB over OBMC and 2.25 dB over OF.



Sequence OBMC  OF 30F
Coastguard  31.83  30.92 32.71
Foreman 29.26 29.28 30.19
Hall 36.46 3228 37.25
Soccer 21.30 2243 2375

Table 1. Average PSNR across the 74 interpolated frames for the four test sequences.

4. Conclusion

We have proposed an improved algorithmic setup for the TV-L! optical flow method, as well as a method of interpola-
tion that uses three complementary motion estimates to build the in-between image frame. We have demonstrated that
the methods significantly improve interpolation quality over methods used in current state-of-the-art distributed video
coding [2], which in turn means that the inclusion of this frame interpolation method in a the codec should improve
the performance of the codec further.
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