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Abstract

We present a new split-type algorithm for the min-
imization of a p-harmonic energy with added data fi-
delity term. The half-quadratic splitting reduces the
original problem to two straightforward problems, that
can be minimized efficiently. The minimizers to the two
sub-problems can typically be computed pointwise and
are easily implemented on massively parallel proces-
sors. Furthermore the splitting method allows for the
computation of solutions to a large number of more ad-
vanced directional regularization problems. In particu-
lar we are able to handle robust, non-convex data terms,
and to define a 0-harmonic regularization energy where
we sparsify directions by means of an L° norm.

1 Introduction

This paper is concerned with directional regulariza-
tion of vector valued functional data, i.e. regularization
where the angles between vectors are regularized, but
magnitude remain unaffected. This type of regulariza-
tion has many uses, in particular for data where magni-
tude and direction are corrupted in different ways. Ex-
amples are e.g. chromaticity denoising of images [8],
inpainting [6], or regularization in optical flow estima-
tion [1, 4].

We start out from the p-harmonic regularization of
Vese and Osher [8], review the possibilities for adding
a data term, and propose an effective splitting algo-
rithm for minimizing the resulting energy functional.
By modifying the sub-energies in the algorithm, we are
able to define and solve several new types of directional
regularization problems.

The p-harmonic energy is defined as
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where u : R? — RF, d,k > 2and p > 1. Vese and
Osher derived the corresponding Euler-Lagrange equa-

tions and introduced a semi-implicit scheme for com-
puting the steady state. The method is appealing in the
sense that it is an unconstrained minimization problem,
but still it is only the directions of the initial state that
are regularized and data magnitudes stay intact. On the
down side, this solution strategy can be quite slow, and
does require some amount of hand tuning in order to ob-
tain good results. To address these issues, we will add
a data term to the p-harmonic energy, and derive a new
algorithm with appealing computational properties for
minimizing the resulting functional. The derived algo-
rithm is generalized to handle robust data terms. Fur-
thermore we extend the definition of p-harmonic to in-
clude p = 0, i.e. where we penalize the gradient using a
sparsity imposing L° norm, and show how to generalize
to anisotropic regularization.

The rest of the paper is organized as follows: In the
next section we will review the problem of adding an
L? data term to H,. In Section 3 we derive the split-
ting algorithm for minimizing (1). Section 4 considers
generalization of the derived algorithm, and finally we
conclude and propose future directions in the last sec-
tion.

2 Data terms for directional data

The energy (1) can either be used to compute a
steady state of the directions in the data, or as showed
in [8], one can merely diffuse the directions according
to the energy as a denoising method. This will however
typically require hand tuning of the stopping time, in
order to obtain good results. To avoid this we propose
to add a data term, which will give more control over
the smoothness properties of the solutions. A standard
choice is a quadratic term [4, 6], which, given data f,
leads to the following energy
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where the parameter A > 0 controls the trade-off be-
tween data fidelity and regularity. However (contrary to



what was stated by Gai and Stevenson [4]) this data term
will affect the magnitudes of the minimizer. To see this,
we assume that £ = 2 and use the polar representation
u = (rcosf,rsinf) and f = (scos¥, ssin?), where
the parameters are space dependent. Since the magni-
tude is only present in the data term, one can estimate r
pointwise, and from the Euler-Lagrange equations one
can calculate the solution

r = scos(d — ).

Different approaches can be taken in order to eliminate
this problem. Here we take the simple approach of dis-
carding information about magnitude completely from
the data term, and minimize the energy

2
_ u(x) f(z)
w = A/HW T @ H dz + Hy(u), (2)

under the constraint that ||u(x)|| = || f(2)], which can
of course easily be included in the energy by means of
an extra data term.

3 Algorithm

Instead of directly minimizing (2) we propose to do
a half-quadratic splitting of the energy in two coupled
energies. These two sub-problems are then solved in-
terleaved as the split energy is made converge to (2). In
recent years, this technique has been used in a number
of interesting applications, e.g. optical flow estimation
[12, 10, 7], image denoising [9], and image processing
[11]. We propose to split the energy as follows
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and obtain a minimizer of (2) by iteratively minimizing
itin v and v as 8 — oo.
Consider first the minimization of (3) in u,
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under the constraint that ||u(x)|| should equal || f(x)]|.
Since no differential of « is involved the minimization
can be done pointwise, and the solution can be shown
to be
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where 7 is the projection onto the k-dimensional unit
ball.
The minimization problem in v gives the energy
2
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which can be solved by some of the many known meth-
ods for different values of p. The sequence of 5’s in the
iterative minimization is chosen according to [11].

The case p = 1 is perhaps the most interesting as
this corresponds to total variation (TV) regularization.
In this case, depending on the interpretation of the vec-
torial gradient, F» can be minimized by the efficient
dual methods of Bresson and Chan [2], or one can in-
terpret the last term as the vectorial total variation of
Goldluecke et al. [5], and use one of their methods.
Here we will use the definition of Goldluecke et al., as
this definition of total variation does not suffer from any
channel smearing.

The algorithm has been implemented in CUDA C
in order to take advantage of the thousand of cores on
modern GPUs. The minimization procedure withp =1
can be done in less than a second for a 640 x 480 color
image on an NVIDIA Tesla C2050 GPU.

An example of chromaticity denoising using 1-
harmonic regularization can be found in Figure 1.

(&)

4 Generalizations

The presented splitting algorithm can easily be mod-
ified to solve other directional problems. One can for
example replace the regularization term in £ by a spa-
tially weighted term or by an anisotropic term simi-
lar to the one of Werlberer et al. [10] to include e.g.
magnitude information to guide the regularization di-
rections. Here we will consider two generalizations in
detail. First, the possibility of using more robust data
terms, and secondly directional sparsification by means
of 0-harmonic regularization.

4.1 Robust data terms

If data contains outliers or is severely degraded, an
L? data term will often produce problematic results. In
order to mitigate the effects of outliers, one can replace
the quadratic norm by a robust data term. A popu-
lar choice is the ! norm, which combined with un-
constrained TV regularization has some nice properties,
e.g. contrast invariance [3].

Due to the projected terms ﬁ it may however
be very hard to find an explicit solution to (4) if the



Figure 1: 1-harmonic regularization of an image with noisy chromaticity. Left: Original image, middle: Noisy
chromaticity (MSE 663.5), right: Result after regularization (MSE 32.7), A = 1.2. Zoom-ins show original image and
pure chromaticity, where color vector magnitude has been removed.

quadratic norm is replaced by a robust term p. However,
as in the L? case the modified energy can be minimized
pointwise, giving a minimization problem of the form

ex(u) = 2o (127 — ) + 8] i —UHQ. ©)

e is a function of w only through its defining angles
6; € [0,2m), i = 1,...,k — 1, and one can resolve
to minimizing e; by a complete search in the space of
angles [0,27)*~ 1. For k = 2 the additional time con-
sumption of the regularization procedure is less than a
second, and for £ = 3 a brute force search in angle
space is still feasible with an additional computation
time of approximately 10 minutes, in the setup from in
the previous section.

We have considered two robust measures of data fit,
namely an L! data term and a Cauchy/Lorentzian data
term

p=log(L+] - |).

Figure 2 shows an image where the color data has been
severely degraded (top row contains the image data,
bottom row only the directional component). We see
that the results produced by using the robust data terms
better handle desaturation and have better vibrancy than
the result produced by the L? term.

p=1-1

4.2 0-harmonic Regularization

1-harmonic regularization will evoke some sparsity
in the regularized directions, due to the well known
staircasing effect of TV regularization. But in some
contexts we want to go even further than total variation
can bring us. For this we can use an L regularization
of the gradient.

Consider the norm ||z||, z € R. Asp — 0 ||z]|P —
1 for x # 0, and weighting the importance of continuity
of the empty sum over continuity of the empty product,
we can choose [|0]|° = 0, which defines the zero norm.
Formally, the vectorial zero norm is defined as

[u(@)lle, # O}]-

Clearly, regularizing the gradient of an image with this
norm will create a very sparse, cartoon like result with
only few edges. Xu et al. [11] recently presented an ef-
ficient algorithm for regularization using the zero norm,
i.e. for minimizing energies of the form
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where p denotes the Hausdorff measure. By replac-
ing E5 with this type of energy we can regularize our
observations such that magnitudes remain unaffected
while the directions are sparsified. While an L° regu-
larization of the gradient is not suitable for data where
noise is significant, it has a number of other interesting
uses. One example is data where one knows directions
to be sparse, e.g. a fixed camera filming cars going
by. Another possible applications is image compres-
sion, where sparse color directions may be very valu-
able, since the human visual system is quite tolerant
to color errors, and because the prominent color fea-
tures of the image is preserved very well using this form
of regularization. This means that images with sparse
color directions may be hard to distinguish from the
original, but can be encoded much more efficiently. An
example of 0-harmonic regularization can be found in
Figure 3. Close inspection reveals that the curtain in the
right side of the image seems somewhat more flat in the



(a) Original image (b) Degraded image

(c) L? data term
A=05 A=0.5 A=0.6

(d) L! data term (e) Cauchy data term

Figure 2: Comparison of different data terms with 1-harmonic regularization of an image with noisy chromaticity
(Gaussian noise with standard deviation of 0.2 and 40% impulse noise followed by renormalization of the directions).
Parameters A are chosen as the highest value for which no strong artifacts are noticeable in the reconstructed image.
Mean squared errors: Degraded image 5322, L? data term 1285, L' data term 876, Cauchy data term 1145.

regularized image, but otherwise they are hard to distin-
guish. We note that the sparse color directions in Fig-
ure 3 (without magnitude information) can be encoded
using only 11 % of the space of the original in PNG
ISO/IEC 15948:2004 encoding with standard settings,
and using a specialized encoding, this number may be
further decreased.

5 Conclusions and Outlook

We have considered the problem of directional regu-
larization, in particular in form of the p-harmonic regu-
larization of Vese and Osher [8]. We have introduced
new magnitude-preserving data fidelity terms that al-
lows for better control of the regularization, and we
have derived an efficient parallel algorithm for minimiz-
ing the resulting energy, and demonstrated a GPU im-
plementation. In addition we have considered a novel
generalizations of the proposed algorithm, and have
outlined a general scheme of generalization. We have
briefly touched the question of how to generalize to
anisotropic regularization of angles, and have in de-
tail considered how to use more advanced data terms,
and how to extend p-harmonic regularization to the case

p = 0 which gives an interesting method for sparsifying
directions, which in addition to reconstructing sparse
structures, may be used for compression purposes.

The proposed algorithm works for arbitrary domain
and response dimensions. Here we have only consid-
ered the case of color images (d = 2, k = 3), but inter-
esting applications may be found in a large number of
other types of data. We have briefly mentioned optical
flow (d = k = 2), and for three dimensional domains,
many interesting applications are available in e.g. med-
ical image analysis and video coding.

An interesting point of future research is how to cou-
ple angle and magnitude components for anisotropic
regularization of different types of data. Moreover the
use of 0-harmonic regularization for image compres-
sion is worth looking into, as preliminary results sug-
gest that one can achieve very high compression of the
chromaticity, at little or no cost in the perceived quality
of the final image.
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(a) Original image

(b) With sparse RGB directions

Figure 3: 0-harmonic regularization (MSE 16.6), original image and chromaticity, A = 5
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