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ABSTRACT

We consider the problem of estimating the “smoothness pa-
rameter” that controls the tradeoff between data fidelity and
regularity in optical flow estimation. We start by reviewing
the problem of global estimation using the Optimal Predic-
tion Principle (OPP) by Zimmer et al. [1]. Inspired by this
technique and work on local-global optical flow we propose
a simple method for fusing optical flow estimates of differ-
ent smoothness by evaluating interpolation quality locally by
means of L1 block match on the corresponding set of gradi-
ent images. We illustrate the method in a setting where optical
flows are estimated by a TV-L1 energy. On average this pro-
cedure reduces the average endpoint error by 15% over flows
estimated using the OPP, and gives flow fields that are consis-
tently better than the single best flows with a fixed smoothness
parameter.

Index Terms— optical flow, motion estimation, parame-
ter estimation, TV-L1

1. INTRODUCTION

The variational framework with competing data fit and regu-
larity measures is widely adopted for optical flow estimation
today [2, 3, 4, 1]. These types of methods typically have a
parameter λ that determine the tradeoff between data fidelity
and regularity of the estimated optical flow. We will refer to
this parameter as the smoothness parameter. We consider the
problem of choosing a good value of λ which is of crucial
importance to the quality of the estimated flow.

We will first review the optimal prediction principle sug-
gested by Zimmer et al. [1] as a method for automatically
choosing a global smoothness parameter. We will consider
variations of the principle, and then move on to the question
of locally estimating smoothness. We will view this as a sub-
problem of the more general question of automatically deter-
mining which of two flows is best at a given spatial location.
Several works have considered this problem from different
angles. One notable example is the work of Lempitsky et al.
[5], where simple flow candidates were fused to produce su-
perior flows by minimizing a highly non-convex energy. An-
other interesting approach is presented by Mac Aodha et al.
[6], where a random forest classifier is used to segment video

data such that the pixels belonging to each individual class
has their flow computed by a specific optical flow algorithm.
The method we present here is simple, elegant and easy to im-
plement. The general setup is inspired by the work of Bruhn
et al. [7], that first proposed to combine local and global ap-
proaches, but here the elements are combined in an alternative
manner: A number of candidate flows are estimated with dif-
ferent values of the smoothness parameter. This is done by a
global approach (TV-L1). The computed candidates are then
fused to a single superior flow using a local variant of the OPP,
where we locally evaluate data fidelity (L1 block match) on
the corresponding pair of gradient images. While this setup
is very simple, we show that we can substantially increase
accuracy of the estimated flows.

The estimation principle is generic and can be used with
any choice of optical flow algorithm for the candidate flows,
as well as any choice of local evaluation method. Here we
will restrict ourselves to grayscale images and use a variant
of the TV-L1 optical flow algorithm of Zach et al. [4] to keep
the exposition clear and simple.

2. TV-L1 OPTICAL FLOW

Optical flow refers to the apparent motion pattern between
two images I0 and I1. We calculate the displacement field v
such that the difference I1(x+v(x))−I0(x) is minimized in
some sense, under the condition that v maintains sufficiently
regularity. Here we will concentrate on the variational TV-
L1 formulation of the optical flow problem, where the optical
flow is recovered as a minimizer of the energy E:

E(v) =

∫
λ|I1(x+ v(x))− I0(x)|+ ‖Dv(x)‖ dx. (1)

The first term in this energy is the L1 part, i.e. an integral of
the Euclidian norm of the difference I1(x + v(x)) − I0(x).
This term builds on an assumption that image values are con-
served along the motion over time. The second term is the
vectorial total variation of the flow. This is not uniquely de-
fined, and in this setting we have used the definition that D is
the 1-Jacobian of Goldluecke et al. [8], which means that the
energy favors smoother displacement fields, but at the same
time allows for discontinuities.



Fig. 1: Color coded TV-L1 optical flows calculated for the
Army sequence [11]. λ was set to respectively 2 and 30.

We will do the minimization of this energy using a method
similar to the one proposed by Zach et al. [4]. The first step
in the minimization is to linearize the optical flow constraint
I1(x+ v(x))− I0(x) around the point x+ vx

0 for each x:

(v(x)− vx
0 )
>∇I1(x+ vx

0 ) + I1(x+ vx
0 )− I0(x)

=ρ(v)(x)

. (2)

We then introduce an auxiliary flow variable u and split the
minimization problem in two coupled problems

E(u, v) =

∫
λ|ρ(v)(x)|+ ‖Du(x)‖ dx

+

∫
1

2θ
‖v(x)− u(x)‖2 dx.

(3)

This energy is then minimized iteratively in u and v in a
coarse-to-fine image pyramid.

For u the energy is minimized by the methods presented
in [8], and for grayscale images the minimization in v is eas-
ily acheived using the result of Zach et al. [4] which simply
states that the minimizer is given by a pointwise projection to
a line segment. In the setting of general vector valued images
the minimizer can be found using the L1-L2 minimization of
Rakêt et al. [9]. We will not go further in to detail about the
exact procedures in this paper.

Remark. The optical flow parameters throughout the pa-
per are set as follows: θ = 0.2, 70 pyramid levels with a scale
factor of 0.95. On each pyramid level we are performing 60
warps where we first solve (3) in v, and then do 10 inner iter-
ations of the BM algorithm of [8] for minimization in u. ◦

3. THE OPTIMAL PREDICTION PRINCIPLE

A question of great importance for the quality of the estimated
flow is how to choose the smoothness parameter λ. An exam-
ple of the effect of different λ values can be seen in Figure
1. Since different types of image sequences can have very
different qualities when measured through a specific regular-
ity or data fidelity measure, it is clear that a single choice of
λ will hardly suffice for all sequences, and that methods for
estimation of λ may be very useful, e.g. in video coding [10].

In this section we will consider the optimal prediction
principle of Zimmer et al. [1] as a method for automatically

choosing λ. The OPP simply states that the optimal smooth-
ness weighting λ is the one for which the corresponding flow
predicts the next frame I2 most precisely. This simple princi-
ple relies on the assumption that motion is nearly linear from
I0 through I1 to I2. Instead of using the optical flow algo-
rithm of Zimmer et al. we will evaluate the principle using
the more generic and popular (although less sophisticated)
TV-L1 algorithm [4, 12, 9] and we will consider alternative
prediction setups. The optimal prediction principle has pre-
viously been evaluated in an alternative setting [13], but with
less convincing results than the ones originally obtained by
Zimmer et al.

One can generalize the OPP to evaluate on any frame k.
For the grayscale TV-L1 optical flow algorithm, the natural
way of determining the optimal smoothness is to determine
the λ for which

Pk(λ) =

∫
T

|Ik(x+ kvλ(x))− I0(x)|dx. (4)

is minimized for some k, where vλ is the TV-L1 flow com-
puted between I0 and I1 with smoothness parameter λ, and
the non-pixel locations x+ kvλ(x) are evaluated using bicu-
bic lookup. The most interesting cases are k = −1 corre-
sponding to backward prediction, which means that we are
assuming that the motion is linear through I0, k = 1 corre-
sponding to choosing the flow with the best data fit and k = 2
which is the original OPP. Instead of using the same data
fidelity measure as the optical flow algorithm, one can also
choose a complementary measure, here we will also consider
OPP measures on the corresponding gradient images. These
measures will be denote by P∇k .

Table 1 (a) holds average endpoint error (AEE) results for
Pk and P∇k , k = 1, 2 and the corresponding λ-values for the
six Middlebury training sequences [11] with more than two
frames, as well as the optimal λs. We see that fixing λ = 50
will only increase the average AEE by 3% compared to the
optimal values, while the original (P2)-OPP estimate perform
somewhat worse. As one would expect λ is consistently over-
estimated using P1, however interestingly P∇1 does not seem
to cause overestimation issues at all, giving the overall best
results at only 2% higher weighted average AEE than the op-
timal choices. We see that evaluation of prediction quality
on the gradient image ∇I2 does not work very well for the
highly textured Urban sequences, which gives overall worse
results of P∇2 than for the original OPP. This suggests that in
the given setting a complementary measure of data fit may be
a better indicator of quality than prediction ability of the flow.

4. LOCAL FLOW EVALUATION

In the previous section we saw that estimation of a global λ-
value in the presented setup gave good results with a cleverly
chosen principle, however a spatially fixed λ seems inappro-
priate, when data fidelity in different image regions should



best best common P1 P2 P∇1 P∇2

Grove2

0.139 (38) 0.139 (50) 0.151 (192) 0.146 (142) 0.140 (77) 0.139 (50)

Grove3

0.561 (150) 0.576 (50) 0.571 (195) 0.570 (156) 0.570 (63) 0.569 (64)

Hydrangea

0.189 (13) 0.206 (50) 0.260 (198) 0.257 (184) 0.193 (26) 0.190 (17)

RubberWhale

0.128 (58) 0.130 (50) 0.161 (197) 0.134 (104) 0.129 (26) 0.129 (52)

Urban2

0.329 (76) 0.334 (50) 0.335 (100) 0.344 (194) 0.337 (52) 0.392 (21)

Urban3

0.541 (77) 0.547 (50) 0.582 (186) 0.651 (34) 0.562 (41) 0.855 (21)

Weighted average 1.00 1.03 1.14 1.12 1.02 1.13

(a)

P 0.5
·,∇ 3× 3 5× 5 7× 7

Grove2

0.135 0.135 0.136

Grove3

0.549 0.553 0.556

Hydrangea

0.175 0.176 0.177

RubberWhale

0.114 0.113 0.112

Urban2

0.317 0.317 0.320

Urban3

0.483 0.475 0.473

Weighted average 0.937 0.935 0.938

(b)

Table 1: (a) AEE results, and corresponding λ ∈ {0, 1, . . . , 200} (in parenthesis) for the Middlebury optical flow database
training sequences (> 2 frames). The weights used in the weighted average are the lowest observed AEE (“best” column) for
the given sequence. (b) AEE results for locally fused flow candidates vλ, λ ∈ {10, 20, . . . , 200}. The name of the column
indicates the size of the used neighborhood. The final fused flow has undergone two times 5× 5 median filtering. The weights
used in the weighted average are the same as in (a).

clearly be weighted differently. A number of optical flow al-
gorithms try to model this by using anisotropic regularization
and/or spatially weighted data terms (see e.g. [14, 1]), and
while these initiatives clearly increase the performance of the
algorithms, they cannot account for all reasons of spatially
varying smoothness.

We consider the problem of estimating local smoothness
from the point of view of the more general problem of locally
determining the best of two given flow candidates. This prob-
lem has previously been considered by Mac Aodha et al. [6]
and Lempitsky et al.’s FusionFlow [5]. The FusionFlow ap-
proach has been taken one step further and integrated in the
algorithm of Xu et al. [3] where several high quality candidate
flows are fused at each pyramid level. In this work we will use
the simple ideas from the optimal prediction principle to con-
struct a straightforward and fast method for blending multiple
flows to a single superior flow.

We suggest to localize the OPP by evaluating flow vectors
in a surrounding neighborhood in a fashion similar to the clas-
sic Lucas-Kanade method [15]. Inspired by the results in the
previous section we evaluate directly on the (gradient) target
frame∇I1. I.e. we propose to use best data fit on the gradient
images for the estimation, which is given by

P loc
x0

(v) =
∑

x ∈ N (x0)

‖∇Iσ1 (x+ v(x0))−∇Iσ0 (x)‖, (5)

where N (x0) is a local neighborhood of x0. For all flow
candidates we calculate the measure at each pixel location x0

and the flow vector from the candidate with the lowest value
is then assigned at x0.

The locally varying smoothness is obtained by calcu-
lating n flows (vλi

)1≤i≤n with different values of λi, fuse
them locally according to (5), and finally smooth the result-
ing flow by means of some spatial regularization to avoid
problems caused in P loc

x0
by e.g. untextured image neighbor-

hoods. Two applications of 5 × 5 median filters have been
found to work well for this. The results of this procedure for
λ = 10, 20, . . . , 200, where N (x0) is respectively a 3 × 3,
5× 5, and 7× 7 neighborhood, are found in Table 1 (b).

We see that the AEEs are consistently lower than the ones
corresponding to the best single λs from Table 1 (a), which in
turn is a significant improvement over the optimal prediction
principle. In Figure 2 the estimated (non smoothed) λ-field
for the RubberWhale sequence as well as the optimal com-
bination (AEE 0.091) can be found. We see that, while both
are quite noisy, the estimated λ-field does seem to capture
some information about edges and textures, and weight the
smoothness of the flow accordingly. It is worth to notice that
the solution corresponding to the λ image depicted in Fig. 2
would differ slightly from the flow resulting from solving (3)
with the same pointwise weights, as the flow vectors inter-
act through the TV regularization and coarse-to-fine pyramid.
Incorporating the estimation procedure into the algorithm, in-
troducing anisotropy by maintaining a field of λs throughout
the pyramid levels (similar to the use of the fusion step in [3])
would probably increase quality of the solutions, in addition
to giving a more consistent method for estimating the field of
λ values.

Finally we note that the presented method improves the
AEEs on the six training sequences by almost 10% compared



estimated optimal

Fig. 2: The estimated λ values (3× 3 neighborhood) and the
optimal choice for the RubberWhale sequence. Dark means
lower λ-value and light corresponds to a higher value.

to the results of Mac Aodha et al. [6], which fuses high qual-
ity solutions calculated calculated among others by the very
optimized TV-L1-improved algorithm of Wedel et al. [12]
and Werlberger et al.’s Anisotropic Huber-L1 flow algorithm.

5. CONCLUSION AND FUTURE WORK

In this work we have presented a method where local data
fidelity is used to fuse flows of different smoothness. This
provides a method for locally estimating the smoothness pa-
rameter of the optical flow algorithm. We have demonstrated
that the proposed method consistently produces flow candi-
dates of better quality than the single best global flow they
were built from, while the computational workload is similar
to that of the optimal prediction principle. Another great ad-
vantage of the proposed setup is that the estimation in done
in terms of a local evaluation, and as such there is no limit on
how complex a measure we can use, since we do not need to
minimize a complex model.

The proposed method is generic, and can also be used to
fuse flows that vary in other respects than smoothness (other
parameters, different algorithms, etc.). One example could
be flows calculated with different data fidelity functionals
(brightness constancy vs. gradient constancy cf. [3]), which
would however require a more complex local evaluation.
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