Quasi-static Simulation of
Foam in the Vertex Model

Bue Krogh Vedel-Larsen

buekvl@gmail.com

Master of Science Thesis

University of Copenhagen, Denmark
Department of Computer Science

October 29, 2010

Abstract

In the field of computer physics, foams have proved to be a challenging phe-
nomenon to simulate. The fragile nature of foam combined with heterogeneous
materials interacting in an inherently unstable and continuously evolving mass
requires highly specialized numerical methods. This thesis presents the Vertex
Model, a quasi-static soap-film model of two-dimensional dry foam that focuses
on capturing the physical behavior of foams with low liquid content. A detailed
examination of the Vertex Model is made and statistics, gathered from a CUDA
implementation of the model, are presented and compared to experimental data
to demonstrate the validity of the model. The thesis contributes a novel ap-
proach to the computational mesh in the form of the dual of the foam, as well
as two hard constraints on the quasi-static relaxation process. It is further dis-
cussed how the Vertex Model can be parallelized and how modern GPU’s can
be used to render foams in a fast and flexible manner.

Contents

1 Introduction

1.1 Previouswork
1.1.1 Physics-based foam simulation
1.1.2 Foam rendering
1.2 A few words on vocabulary00
1.3 The findings of this thesis
2 The Physics of Foam
2.1 Dry foam in two dimensions
2.2 The geometry of foams in equilibrium
2.3 Topological operations L.
2.4 Diffusion
2.5 Surface energy
2.6 Foam statistics L
2.7 The dry foam model
3 A Vertex-Based Model of Dry Foam
3.1 The quasi-static simulation
3.1.1 Finite difference L.
3.1.2 Solving the linear system
3.1.3 Updating the foam
3.2 Computational mesh L 0L
3.2.1 Discretizing a foam o000
3.2.2 Topological changes
3.3 Anglesandareas
3.4 Boundary conditionso oL
3.5 Hard constraintso oL
3.5.1 Orientation Invariant Constraint
3.5.2 Energy Decay Constraint
3.5.3 Imposing the constraints
3.6 Handling two-sided cells
3.6.1 Two-sided cell collapse
3.7 The complete model L.
4 Implementation
4.1 Calculating the Jacobian L.
4.2 The quasi-static simulation
4.3 Topological operations

=~ w W

D O Ot

11
12
13
15
16
17

18
18
21
22
22
23
23
25
27
30
31
32
34
36
36
39
40

CONTENTS CONTENTS

4.4 Parallelizing the simulation
4.4.1 The Vertex Model in Jacobi form
4.4.2 Verifying the Jacobi algorithm

4.5 A CUDA implementation
4.5.1 A brief introduction to CUDA
4.5.2 Computational mesh representation
4.5.3 Initializing the simulation

5 Rendering of Foam Films
51 AGPUarcrender
5.1.1 TImage space rendering
5.1.2 The Geometry Shader
5.2 Constructing edge triangles
5.3 Examples

6 Results

6.1 Foam evolution
6.1.1 Lower extreme
6.1.2 Development with the Energy Decay Constraint
6.1.3 Development with the Orientation Invariant Constraint
6.1.4 Further experiments

6.2 Foam equilibrium o

6.3 Implementation performance

6.4 Discussion Lo e

7 Conclusion
7.1 Futurework
7.1.1 Improved Newton root search problem
7.1.2 Improved topological operations
7.1.3 Further improvements
7.2 Acknowledgement oo

A Results
A1 273 cell experiment - With Energy Decay Constraint
A.2 2.286 cell experiment - With Energy Decay Constraint
A.3 2.286 cell experiment - With Orientation Invariant Constraint . .

B Implementation Details
B.1 Gauss-Jordan Reduction
B.2 Arc render Geometry Shader,

58
60
61
62
65
65

69
69
69
69
79
80
82
82
84

89
89
89
91
91
91

Chapter 1

Introduction

In the field of computer physics, foam is a subject that has not received much
attention. While foam models certainly exists, foam has never received the in-
terest of liquids, rigid- and soft-body dynamics, and smoke has enjoyed. This
is surprising given the proliferation of foams in nature, from the foam-like be-
havior of biological cells, to foam as a material in the building industry. We
encounter foams constantly: Soap foam when we wash our hands, milky froth
in a cappuccino served to-go in a styrofoam cup, foam padding on our furniture,
and foam forming when we pour a glass of beer.

In this thesis I will examine one of the existing models of foam and attempt
to improve certain aspects of it. I will briefly cover the physics of foam, then
make a detailed description of how we can make a mathematical model, the
Vertex Model, that captures the behavior of foam which we can then turn into
a computational model, ready for computer simulation. The presented model
focuses on a physical correct modeling of the behavior of foam, while the visual
aspects, with light interference patterns and scattering, have been ignored. The
philosophy has been to create a foam model that is physical correct first and
then we can add external dynamics and better visuals afterwards.

The model presented here will be strictly two dimensional. Intuitively we
can image that we are observing a foam that is caught in the very thin gap
between two glass plates that are almost touching. This condenses the physi-
cal theory involved into a form that are directly observable by physicists in a
controlled experiment. Therefore two dimensional foams are comparatively bet-
ter described than three dimensional foams. At the same time, restricting the
model to a two dimensional plane greatly simplifies the mathematics involved.

1.1 Previous work

In physics, foams have been extensively studied and documented. Giving a
complete treatment of the field would be beyond the scope of this thesis, so I have
focused my research on the advances in computer simulation of foam, a much
smaller subject area. I have seperated the following into two main categories:
Foam simulation and foam rendering. Simulation are (physics-based) methods
for generating foams that can be compared to experimental measurements of
real foam samples. The work in this thesis falls into this category. The second

Introduction Previous work

category are foam models which focuses on the visual aspects of cells and foams.
Many of these have no direct physical foundation but mimicks the observed
behavior of foam.

1.1.1 Physics-based foam simulation

In [26] and [27], Weaire and Kermode presented a computer simulation of dry
foam which is the basis of the method presented in this thesis. Their model
included all of the theoretical foundation which this method builds on, such
as the Plateau laws, the Laplace-Young law, von Neumann diffusion, and T1
and T2 topological processes. However, they used periodic boundaries and they
showed no foams with more than 100 cells. Interestingly, their prime motivation
was grain growth in polycrystalline metals and glasses.

In [28], Weaire and Rivier surveyed and described many different space-filling
random two dimensional patterns, among these soap froth. It was shown how
soap froth is just one in a class of cell based patterns that all follow some similar
statistics. Several useful theoretical tools was mentioned in passing, including
graph duality, cell network surface energy, and Aboav’s law for the relation
between the number of sides in a cell and the mean number of sides in cells
surrounding it.

Wejchert et al. [29] sought to investigate the asymptotic behavior of foam
as time t — oo, but they realised that the simulation created by Weaire and
Kermode [26] was too time consuming. They therefore created a Monte Carlo
method on a fixed hexagonal grid to simulate grain growth by minimizing the
surface energy of the system.

Kawasaki et al. [12] were the first to present a vertex-based model to simulate
grain growth in polycrystaline metals. Their model used a straight-line approx-
imation of films and a velocity/friction model for the movement of junctions.
Using their model they simulated foams of up to 24.000 cells.

Brakke [3] created a computer program, which he called the Surface Evolver,
for minimizing the energy of surfaces subject to constraints. He worked with
surface integrals in a soap-film model of two dimensional surfaces embedded in
three dimensional space, but could handle arbitrary dimensions. An example
of its use shows a simulation of grain growth in a metal as a two dimensional
Voronoi network of cells with periodic boundaries, a problem that is closely
related to dry foam. However, the focus of the Surface Evolver is, in the authors
own words, breadth of application, not optimal treatment of specific problems;
it can not replace the more specialized simulations as presented in this thesis.

Aste [1] investigated evolution of froths under geometrical and topological
constraints in the statistical model. He found that, while froths can reach a
stable equilibrium state, they will only do so at very high temperatures (~ 101°K
for soap froth). At “normal” conditions froths will remain unstable and evolve,
increasing the size of large cells at the expense of small cells, which will shrink
and disappear.

Fuchizaki et al. [10] presented a three dimensional vertex-based model for
grain growth, based on the Kawasaki [12] model. To ameliorate the problem
of accurately modeling the behavior of three dimensional film surfaces, virtual
vertices was used to piece-wise approximate curved surfaces.

Marsh et al. [15] was the first to present a vertex-based model that used film
curvature to more accurately model the behavior of junctions. They demon-

Introduction Previous work

strated a method for calculating film turning angles that is very close to the
one used in this thesis, however, they still used the velocity/friction model of
Kawasaki et al. [12].

Neubert and Schreckenberg [18] presented a summary and comparison of
six models for simulating soap foam, including a vertex-based model and five
topological event-driven models. The vertex-based model was based on straight-
line films.

In [30] Weygand et al. updated the Kawasaki [12] model by adding virtual
vertices between junctions. In this way they could increase the accuracy of the
straight-line model and could remove some of the simplifications of the model
used by Kawasaki et al.

In [31] Weygand et al. extended the Kawasaki [12] model from two dimen-
sions to three dimensions, by adopting the Fuchizaki [10] model, and investigated
the differences between two dimensional and three dimensional simulations. It
was found that, while similar, there was key differences and that two dimen-
sional simulation slices can not, in general, be used to replace a three dimensional
simulation.

Tcart and Arqués [11] focused on the interaction of light with foam, but as
part of their work they presented an model for soap froth simulation based on
minimizing the distance between pairs of spherical cells, subject to the radii of
the cells. As foam dynamics such as coarsening and topological rearrangment
was not handled, it can be argued that the model was not of foam but of cell
clusters. Though the cells where three dimensional, they only simulated a single
layer of cells. See also Section 1.1.2.

A different approach to cell simulation was presented by Durikovié [23] where
individual cells was simulated as a mass/spring system. By creating explicit
models for cell coalescence he was able to form clusters of up to six cells. The
model did not handle foam dynamics such as topological rearrangement and
was better suited to simulating and visualizing single cells and small clusters.

In [32] Zheng et al. presented a simulation method based on fluid simulation
over a grid, with the Navier-Stokes equations in a continuous multiphase fluid
simulation. A Regional Level Set was used to capture the films of cells, though
much smaller than the grid size. A semi-implicit surface tension model was
used to render the simulation unconditionally stable. They conjectured that
the model would be robust enough to handle foams as well as bubble clusters.

Kelager [13] presented a comprehensive treatment of the Vertex Model for
simulating dry foam. Apart from covering several theoretical and practical issues
in implementing the vertex model, the main contribution was the introduction
of a free surface boundary condition through the World Bubble construct. This
thesis can be viewed as a continuation of the work performed by Kelager.

Barrales Mora [2] built upon the Kawasaki [12] model and the Weygand [30]
model to develop a vertex-based simulation for grain growth and used this to
investigate the behavior of grain growth in a magnetic field.

1.1.2 Foam rendering

Icart and Arqués [11] presented a model based on light interference with the
films of soap froth. Using this technique they created realistic color interference
patterns on cell surfaces, both planar and spherical.

Introduction A few words on vocabulary

Cleary et al. [5] used a particle based Smoothed Particle Hydrodynamics
(SPH) model to simulate the behavior of bubbles forming and rising in a liquid.
Bubbles was approximated with spherical particles that were forced upwards
through a buoyancy force and to avoid overlapping they added a spring-based re-
pulsive force between bubbles. While simplistic, their approach captured many
of the traits of foam.

Kiick et al. [14] presented a method where wet foams could be simulated
without an explicit representation of the interior of bubbles. Instead the foam
was approximated as a mass of spheres held together by the interaction of replu-
sive, attrative, and external forces. A ray-tracing algorithm was used to model
the interaction of light within the foam to reproduce the visual appearance of a
mass of bubbles.

1.2 A few words on vocabulary

The subject of this text is a model of the behavior of foam. In reading the
litterature concerning the matter of foams, one will often come across the word
froth used to describe the same phenomenon, e.i. gas or heterogenous matter
seperated into bubbles or cells. Indeed, there seems to be little separation
between foam and froth. Merriam-Webster Online! defines foam as “a light
frothy mass of fine bubbles formed in or on the surface of a liquid or from a
liquid,” while froth is defined as “bubbles formed in or on a liquid.” Weaire and
Hutzler [25] notes that froth is generally uncomplementary which can explain
why foam is preferred by many.

Moving closer to the foam, it consists of cells or bubbles, with cell the more
generic term. Since my main focus is on liquid (dry) foams, I will use cell and
bubble interchangeably, though bubble is not an appropriate term when dealing
with heterogenous, non-gassious materials. Cells are matter trapped in a thin
film or membrane of some other matter, such that the film forms the interface
between the different materials or states. Some uses the term boundary instead,
but I prefer the term film, as boundary is easily confusable with other aspects of
the simulation and membrane usually denotes stretched biological tissue. Where
two films intersects, a (Plateau) border is formed. In three dimensional (3D)
foams, films are two dimensional (2D) surfaces, and borders are one dimensional
(1ID) lines that forms in the intersection of films. In 2D foams, films are 1D
and so films and borders collapses into the same 1D line, so I shall make no
distinction between the two. Where three or more borders intersects a junction
is formed.

In the following chapters I shall delve deeper into what exactly foams, cells,
films, and junctions are.

1.3 The findings of this thesis

This thesis builds in large part on the work begun by Kelager in his thesis
“Vertex-Based Simulation of Dry Foam” [13]. Over the cause of the writing,
almost all parts of Kelagers work was scrutinized and rewritten into a much
improved implementation of the foam simulation. Apart from the topics covered

Thttp://www.merriam-webster.com

Introduction The findings of this thesis

here, many other minor additions and improvements will be detailed through-
out the thesis.

Starting from the bottom, the simulation was rewritten to use the dual of
the foam as the computational mesh. This significantly changes many of the
algorithms used and results in a simpler, more straight-forward and more sta-
ble implementation. Section 3.2 details the new computational mesh. Rewrit-
ting the computational mesh also allowed me to modify the model to include
two-sided cells, a pathological case which no previous implementation has fully
included. Section 3.6 has a thorough discussion of two-sided cells and how they
are incorporated in the simulation.

In Kelagers implementation a simplistic, non-physical constraint called the
“In-Bubble test” was used to ensure that the foam simulation did not enter an
invalid state when junctions were relaxed. I have completely removed this con-
straint and examines two alternative, improved constraints: The Energy Decay
Constraint and the Orientation Invariant Constraint. The first is a physically
based energy measure, where we, by ensuring that the energy of the foam (lo-
cally) decreases, constantly keep the foam in a valid state. The second constraint
is based on the geometry of the foam and limits the movement of junctions to
always obey an rotational ordering invariant. The two constraints are detailed
in Section 3.5. I show that, while both functional, the Energy Decay Constraint
is too strong and the Orientation Invariant Constraint is not strong enough.

A final major improvement to the underlying model is that the algorithm
used by Kelager to control when topological changes was allowed to happen to
the computational mesh has been reworked. Kelagers method, while usable,
was simplistic and insufficient. In Section 4.3 a thorough discussion is made
of the implications of the algorithm for controlling topological operations and
an improved algorithm is presented. Like the energy measure, the improved
algorithm leads to an improved stability of the simulation.

In a novel approach, I have from the start incorporated parallelism in the
simulator. The result is an implementation that, though not fully parallel, per-
forms the computationally heavy relaxation process in parallel with a significant
performance gain. Section 4.4 discusses the problems associated with parallelism
and my solutions to making as large a part of the simulation as possible parallel.
A CUDA implementation is used to demonstrate the viability of the method.

Using the demonstration implementation, I measure several essential statis-
tics of different foams samples and compare them to statistics gathered experi-
mentally from real foams. In Section 6 I show that the Vertex Model produces
foams that are comparable to real foams.

Lastly, from a presentation point of view, I have developed a method for
rendering the simulated foam using a programmable Graphics Processing Unit
(GPU). While the rendered image is still a simplistic black-and-white line draw-
ing, the speed and visual quality of the rendering is much improved. Chapter 5
is dedicated to the rendering of foams.

In this thesis my focus has been on the correctness of the foam model and
the parallelism of the algorithm. As such, certain parts from Kelagers work
has not been implemented. Most notable, all interactive elements have been
removed, as has shear dynamics. The argument is that, while these dynamics
are interesting from a presentation point of view, they are ultimately secondary
until the simulation is completely correct, stable, and fast. I will claim that the
removed elements can be added to my finished implementation with relative

Introduction The findings of this thesis

ease and that they will benefit from the improved simulation.

Chapter 2

The Physics of Foam

In this chapter I will give an overview of the physics of foam as it applies to the
Vertex Model of dry foam, though I will not attempt to account for all of the
details of the topic. For an excellent introduction to the field of foam physics,
Weaire and Hutzlers book [25] is easy and enjoyable to read.

A foam is a heterogeneous mass where two (or more) materials interact to
form cells of one material between films of another material. A well-known
example is soap foam where bubbles of air are trapped between films of water,
with soap used as a surfactant! to decrease the surface tension of the water.
Another example is the formation of crystals in polycrystalline metal alloys,
known as grain growth. The model presented in this thesis most closely matches
the behavior of soap foam and is often known as the soap foam model (or soap
froth model) in the litterature.

When two cells touch, a thin (on the order of nanometers [25]) film of liquid
is formed that separates the two cells and where three films intersects a Plateau
border is formed. In a soap foam, the Plateau borders are capillary tubes,
draining liquid away from the films [11]. The greater the amount of liquid
in the Plateau borders, the greater the cross-section area of the borders are
and we have a wet foam. As the amount of liquid tends to zero the Plateau
border shrinks until it is of a negligable size in a dry foam. In this thesis I will
assume a perfectly dry foam and we can therefore consider the Plateau borders
infinitesimally thin and disregard them. In the following I will make a more
precise definition of how the liquid volume of a foam is measured.

In the foams we will be considering in this thesis, cell scale is on the order of
millimeters to centimeters. A dry foam on this scale is almost meta-stable and,
if not subjected to external forces, will only break down slowly over a time scale
of tens of minutes to hours [22, 25], in a process known as coarsening which
will be discussed in Section 2.4. A wet foam will behave slightly different as the
capillary suction of Plateau borders causes liquid to drain away from the films.
A foam in a near meta-stable state is said to be in equilibrium as the internal
forces caused by surface tension and pressure are balanced. A major part of this
thesis, Chapter 3, is an investigation into a method for bringing a foam into an
equilibrium state. A foam in equilibrium is immobile and thus the energy stored
in the foam is entirely potential and proportional to the surface energy of the

Isurface active agent

The Physics of Foam Dry foam in two dimensions

films in the foam. In Section 2.5 I will cover how to estimate the surface energy
of a foam. Unless subjected to external forces we expect the energy of a foam
sample to decrease monotonically over time as the foam evolves.

As a foam is subjected to gravity, the capillary tubes of the Plateau borders
will drain liquid in the direction of gravity in a process known as drainage. The
effect is that the top of the foam become dry while the bottom remains wet. We
can therefore observe all the stages of a foam from wet to dry in a single foam
sample. In this thesis I will make the assumption that the foam samples we are
considering are a single, infinitly thin layer of cells on a plane perpendicular to
the force of gravity. Gravity will therefore be uniform over the entire foam and
we can disregard gravity and drainage in the model.

We will, unless otherwise specified, only be considering disordered, random
foams. Ordered foams are uninteresting from a simulation point of view, as
there will be no dynamics and the foam will be static. We will also only be
considering mature foam samples and not cover adding gas into the foam. We
will, in other words, not cover inflation of cells.

In a dry foam, under the given assumptions, the films of the foam will form
a topological network where cells are enclosed by films and cells naturally pack
themselves such that three cells forms a stable junction. We say that a foam is
a space-filling cellular structure [28] because a foam will fill all available space
with no holes. In Section 2.2 I will go into more detail on the rules which governs
the formation of foam shapes. As the foam is subjected to internal and external
dynamics, the shape of the foam will change as the topological network of films
is reordered. In Section 2.3 I will introduce two topological operations which
will form the basis for all foam dynamics. The most important internal foam
dynamic of a dry foam is diffusion, which I will cover in Section 2.4. Finally, in
Sections 2.5 and 2.6 I will cover how to approximate the energy of a foam and
a few essential foam statistics.

2.1 Dry foam in two dimensions

A soap foam consists of some amount of gas and some amount of liquid. Formally
we can formulate the amount of gas as the gas volume ratio

ég = N\/Vca

where

is an idealised volume of a cell ¢ with effective diameter d where we assume cells
to be spherical. The effective diameter takes into account that the film enclosing
the cell can be of varying thickness and it may not be well-defined where one
cell ends and another starts when cells are touching. Ny is the number of cells
per unit volume.

Knowing the gas volume we can calculate the liquid volume ratio as ®; =
1 — @,. In this thesis I will limit my attention to dry foam. A dry foam is one
in which the ratio of liquid volume to gas volume is low (®, — 1), while in a
wet foam the ratio is high [25]. As the liquid quantity increases, the cells in the

10

The Physics of Foam The geometry of foams in equilibrium

foam are pushed apart until, in the extreme, the cells becomes free-flowing. The
difference can be readily observed in carbonated beverages, where COs bubbles
rises freely and individually in the liquid but forms a closely packed head of
foam on top.

I will also limit this thesis to foams in two dimensions (2D) on a flat plane.
Informally, this matches the behaviour of foam trapped between two clear glass
plates. As such, the foam has no thickness, only width and breadth. In the lit-
terature, the physics of 2D foams are better understood than three dimensional
foams, in large part simply because 2D foams are easier to observe and quantify
in physical experiments.

2.2 The geometry of foams in equilibrium

Cells are formed when surface tension causes a small quantum of gas to be
captured inside a thin film of liquid. We shall assume that the thickness of
the film is negliable compared to the area of the cell, so that the thickness can
be ignored and films treated as 1D lines. When subjected to stress, the bulk
modulus of a foam is much greater than its shear modulus to a degree where
we can consider the bulk modulus to be infinite [25]. We can therefore assume
that the gas is an incompressible ideal gas, so that we may disregard viscous
forces and inertial effects [26, 25]. Intuitively, when we apply pressure to a foam
it is more likely to deform and move away perpendicularly to the direction of
pressure in a shear effect, than it is to compress.

The pressure difference between cell-cell and cell-environment will cause films
to curve with an arc radius given by the Laplace-Young law [26, 15, 25]

2y

=5 (2.2.1)

r

where Ap = p; — p; is the pressure difference of cells ¢ and j and « is the
surface tension of the liquid medium. As Ap — 0, the film separating the cells
approaches straight as r — oc.

It is important to note that the preceding model of film curvature is an
approximation: In an arbitrary polycrystalline foam the film curvature will,
in general, not be the same at the two junctions and thus the films will not
be circular [15]. However, in a soap foam model we can reasonably make the
assumption that the thin, liquid films and the even pressure differences across
the whole cell will cause the junctions to arrange themselves such that the
curvutature becomes even and the films circular to minimise the energy over
the film.

Joseph Plateau formulated three important laws about the behavior of foams
in equilibrium from experimental observation [25]:

Equilibrium rule A1 For a dry foam, the films can intersect only three at a
time, and must do so at 120°. In two dimensions, this applies to the lines
which define the cell boundaries.

Equilibrium rule A2 Again for dry foams, we may assert, following Plateau,
that at the vertices of the structure no more than four of the intersection
lines (or six of the surfaces) may meet, and that this thetrahedral vertex

11

The Physics of Foam Topological operations

Figure 2.1: A section of a foam sample in equilibrium. Note how all junctions are
formed in the intersection of exactely three films and how films curve to follow pressure
differences.

is perfectly symmetric. Its angles all have the value ¢ = cos™! (—%),
sometimes called the Maraldi angle.

Equilibrium rule B Where a Plateau border joins an adjacent film, the sur-
face is joined smothly, that is, the surface normal is the same on both
sides of the intersection.

These are equilibrium rules in the sense that a foam that does not fulfill these
rules is unstable and will collaps into a form where the rules hold. In the
following we are only concerned with rule A1. Rule A2 only holds for 3D foams,
while Rule B is specifically for wet foam. Al can also be formulated as the
coordination number, cardinality or degree of all junctions must be 3 [28].
Figure 2.1 shows a foam in equilibrium where all junctions are formed in the
intersection of exactly three films. It is immediately apparent that not all film
turning angles are 120°, but in an arbitrary foam sample, such as the one the
shown section is a part of, it is not possible for all films to turn 120°. However, as
the foam is in equilibrium we have reached a state where the foam is as close as
possible to satisfy this. Only in an infinite, perfectly honeycomb-shaped foam,
where each cell has six films, can the Plateau rule be satisfied completely.

2.3 Topological operations

As a foam move and evolve, topological changes in the network of films will
cause the foam to change shape. All these changes can be rooted back to two

12

The Physics of Foam Diffusion

(a) (b)

Figure 2.2: A film is flipped in a T1 operation.

fundamental topological operations [26, 28, 25]. The first operation, which we
shall call the T1 operation, happens when four cells change their combined
connectivity as shown in Figure 2.2, often as a result of pressure differences
pushing two junctions together, to form a single junction where four films in-
tersect. This is an unstable state and the foam will collapse into a lower-energy
state by separating the four-film junction into two three-film junctions. The
second operation, the T2 operation, happens when three cells meet, causing a
fourth cell to collapse as shown in Figure 2.3, typically as a result of coarsening
(see below). All other topological processes can be recreated as a sequence of
T1 and T2 operations.

T1 operations are violent, near-instantaneous changes to the foam topology,
but in the brief time in which the four-film junction seperates into two three-
sided junctions, none of our earlier assumptions about the exclusion of viscous
forces and inertial effects are necessarely true [26]. However, for our use we can
safely treat T'1 processes as instantaneous.

Note how the Plateau A1 rule tie in with the observed behavior of T1 oper-
ations: Junctions that form at the intersection of three films are the only stable
configuration; if more films intersects at a junction, the foam will collapse into
a lower-energy state in a series of one or more topological changes.

2.4 Diffusion

Over time, the thin films between cells allows gas to move from one cell to
another in a process known as diffusion [26, 25]. The pressure difference between
two neighboring cells causes gas to be pressed through the shared film from
the high-pressure cell to the low-pressure cell, causing the high-pressure cell to
shrink and the low-pressure cell to grow. The same process will cause border
cells to loose gas to the surrounding environment. Eventually, as shrinking
cells loose volume, they will undergo a T2 process and disappear, leading to a
macro-behavior where the foam appears to evolve from a detailed state with

13

The Physics of Foam Diffusion

(a) (b)

Figure 2.3: A cell is collapsed in a T2 operation.

many small cells, to a coarse state with a few large cells. This evolution process
is known as coarsening.

Diffusion between two given cells sharing a film can be modeled in 2D as [25,
13]

0A
e —kl(pi —pj) , (2.4.1)
where %—? is the area rate of gas transfer, [is the length of the shared film

(in 3D the film area would be used,) v € RY is the diffusion constant of the
liquid which controls the transfer rate, and p; ; is the pressure of cell 7 and j
respectively. (2.4.1) is derived from Fick’s law of diffusion which states that
the flux of material goes from regions of low concentration to regions of high
concentration.

By combining (2.2.1) and (2.4.1) we get

o4 _ 5 L
o
for a single film and
dA l;

for a cell, where ¢ runs over the films of the cell and /; and r; !is the length and
radius of the i-th film. For a cell with n films, where the tangents of films turn
% degree on account of Plateau’s law, it holds that [25]

Zi m
— — =2m. 2.4.3
z; Lng =2 (2.4.3)
Rearranging (2.4.3) yields the sum rule
li n
Ei =0 (1 - E) . (2.4.4)

Finally, by inserting (2.4.4) into (2.4.2) and rearranging we arrive at
dA 27w

= = 3" (n—6) , (2.4.5)

14

The Physics of Foam Surface energy

which is von Neumann’s law of diffusion. Von Neumann’s law elegantly states
that, irrespective of pressure differences or film lengths and curvature, cells with
more than six sides will grow and cells with less than six sides will shrink. Cells
with exactely six sides are meta-stable and will neither grow nor shrink. From
this and the Plateau rules we can realise that a perfect, infinite honeycomb
structure, where all cells are hexagonal and all films turn %’r, is a perfectly
stable structure which will never change.

Von Neumann’s law is a approximation that captures the macro-behavior
of foam over time based on statistical measurements. In the following I will
explore some other foam statistics.

2.5 Surface energy

A foam can be seen as a network of cells, where each cell has a constant, prede-
termined area, and the foam is in an state of equilibrium when the total surface
energy has been minimized [28]. The surface energy of a foam is proportional
the the area of the films in the foam. In 2D this becomes the length [of the
films:

Efiim = 271 (2.5.1)

As a result we can estimate the total surface energy as

Brotal = > Bt = 27> _li , (2.5.2)
i€E
where F is the set of all films in the foam and [; is the length of the i-th film.
From this we can estimate the energy of a single cell as

Ben =27) 1, (2.5.3)

where ¢ runs over the n films in the cell. As with any physical system, the energy
in the system must be in balance. Therefore we must garantee that all changes
made to the foam preserves or decreases Fioia. In a later section we shall use
this result to impose constraints on the process of equilibrating a foam.

Recall from 2.2 that Plateau’s A1l rule dictates that the turning angle be-
tween any two adjacent films intersecting in a junction must be 120°. Equation
(2.5.1) clearifies why this must be true. Let us consider a foam with uniform
pressure. In such a foam all films will have radius » — oo and so we can con-
sider them straight. Examining a single junction x, we see that the three films
intersecting at the junction spans a triangle with the incident junctions x;, x;,
and xy at the corners, as illustrated in Figure 2.4. The energy of the three films
X — X;, X = X;, and x — x;, are given by (2.5.1) and the combined energy of
the junction x is

Bx = By + Eg + Bpoee
It follows directly from the triangular inequality that Fy is least when x is inside
Ax;x;x; and the turning angles between the three films are all 120°. In other

words, the foam is in a least-energy state when Plateau’s A1l rule is satisfied for
all junctions in the foam. This is the global energy minima of the foam.

15

The Physics of Foam Foam statistics

X

Figure 2.4: The three-junction neighborhood of a junction x. The incident junction
X;, Xj, and X, spans a triangle.

As the pressure in the foam becomes non-uniform and the radius r of films
becomes finite, films will start to curve and we can, in general, no longer fulfill
Plateau’s A1 rule for all junctions. The foam will therefore reach an equilibrium
state where Fiota1 is minimized but not, in general, in the global minima.

2.6 Foam statistics
For a dry foam in 2D the mean number of films in a cell is
n==6 (2.6.1)

which is known as Euler’s law [26, 25] (or Euler’s theorem.) It simply states
that, on average, in an infinite foam sample, cells will have six sides. This results
follows from Euler’s equation

|F| = |E[+ V] =X

where |F| is the number of faces, |E| is the number of edges, and |V| is the
number of vertices in any 2D cellular structure. y € Z is of order 1 and depends
on the space in which the structure lives. For our use, a plane, y = 1. In a
foam, as a result of Plateau’s law, |E| = 3|V| and from this (2.6.1) follows by
substitution.

We expect the distribution of films in a cell p(n) to be symmetric and roughly
gaussian, with mean n = 6, and the second moment

pe =y (n=m)’p(n) =3 (n-6)"p(n),

icF i€F

where F' is the set of cells, allows us to reason about the distribution [26, 25].
Finally, the Aboav-Weaire law

6
m(n)ZG_a+w
n

relates the number of films in a cell to the average number of films in surrounding
cells [28, 22].

The Aboav-Weaire law relates to an observed behavior of foam, where small
cells will cluster around large cells. This creates distinct patterns and the Aboav-
Weaire law measures whether the foam exhibits these patterns or not.

16

The Physics of Foam The dry foam model

2.7 The dry foam model

We can now summaries the preceding into a model for dry foam:

Pressure differences between cells causes films to curve with a radius given
by the Laplace-Young law (2.2.1).

The Plateau laws limits the formation of foams to three-film junctions and
film turning angles will tend to 120° to minimize potential energy in the
foam.

Topological changes are discrete occurances which will cause the foam to
change shape to minimize the potential energy of the foam.

The potential energy is proportional to the surface energy of the foam,
which in 2D is the sum of the length of films.

Over time, gas diffusion between cells will cause the foam to evolve as
gas moves from small cells to large cells according to von Neumann’s law
(2.4.5).

In the next chapter I will develop this physical model into a mathematical model
and then into a computational model which can be implemented on a computer.

17

Chapter 3

A Vertex-Based Model of
Dry Foam

In the previous chapter we explored a physical model of foam. In this chap-
ter I will transform that model into an algorithm for generating and evolving
foams. The algorithm I will be using is known as a vertex-based model or sim-
ply the Vertex Model [15, 12]. T shall begin this chapter by giving a high-level
description of the Vertex Model, then delve into the details.

In the Vertex Model we use a computational mesh to represent the foam.
In each time step of the simulation we can move the junctions of the foam (for
example through rheological processes or external forces), change the area of
cells (for example through diffusion), etc., after which a quasi-static relaxation
process is performed to bring the foam into a new, stable equilibrium state.
Through-out all of these processes we must ensure that the Plateau laws are
not violated.

Iterative simulations are generally the best choice for foam simulation, since
the topological changes the foam must undergo during the course of the simula-
tion can not be defined analytically without making gross assumptions [15]. In
an iterative method, on the other hand, we can make running adjustments to
the foam. Section 3.1 discusses an iterative method for relaxing a foam into an
equilibrium state.

The quality and success of the Vertex Model is dependent on the underlying
computational mesh. In Section 3.2 a novel approach to the computational mesh
is detailed and it is shown how the topological operations are carried out on the
computational mesh. Following that we cover in detail how to compute the
essential properties needed by the relaxation process and boundary conditions
are touched upon. Finally the complete model is presented in Section 3.7.

3.1 The quasi-static simulation

A foam in equilibrium must satisfy two properties: Each cell must have a given
area and each junction must satisfy the Plateau laws [28], e.i. the incident angles
must be 120°. To reach such an equilibrium there are two facets that can be
adjusted: The coordinates of junctions and the pressure in cells.

18

A Vertex-Based Model of Dry Foam The quasi-static simulation

Figure 3.1: The cell area A and film turning angle 6 of three cells surrounding a
particular junction m.

The process of relaxing a foam can be posed as a root search problem where
we must minimize the deviation of areas and angles [25]. Given n cells and m
junctions, let

Fth)=0, (3.1.1)

wheret’ = [p1 - P, 21 T, Y1 -+ Ym| " is the set of cell pressures and junction
coordinates, be a function that measures the deviation of the foam from the state
of equilibrium. We do not have an analytical solution to F', but we can employ
Newton’s method to iteratively find a root [19].

Before we can solve F' we need to have an optimal foam state, such that
we can define this state as the equilibrium state. We say that the foam is in
equilibrium when it is in this optimal state. We therefore introduce the cell area
A; and cell target area A}, which are, respectively, the area and the theoretical
optimal area of cell i. If the cell is free to evolve without other constraints,
it will change it’s pressure and junction positions to have area A; = A7. We
also needs to satisfy the Plateau law, so we introduce the film turning angle
0;.; which is the angle between two films of cell 4, intersecting in a junction j.

We define 0;.; = 27 if cell ¢ has no films intersecting in junction j. Plateau’s

law dictates that i? a cell is free to evolve without other constraints, 0;.; = %"
Figure 3.1 shows cell area A and film turning angle 6. In the following I will
omit the junction index from the film turning angle if the relevant junction is
clear from context.

We can pose the preceding as constraints:

AT - A, =0 (3.1.2)
2
5 0;;=0 (3.1.3)

For now we will assume a method for calculating A; and §;.; exists. Using these

19

A Vertex-Based Model of Dry Foam The quasi-static simulation

constraints we can define

[AT — A]
AT — A,
2%*91.1

F(t') = =0,

2 — Opa
3 n
2%—91.2
27

L ?*on-m i

where n is the total number of cells and m is the total number of junctions. F'
will be of length n + n - m. The Jacobian of F is

ro2Ar ... 84, AT ... oA A1 ... 9AL T
Op1 Opn Ox OTm, oy1 OYm
0A, . 0A, OA, . OA, OA, . OA,
op1 Opn Oxq OTm oy1 OYm
@ L. 8%, 001, . 061, O, .. 901,
op1 Opn 22 O, 0y1 OYm
Vi
VF(t) = : . : : .. : : .. :)
90,1 . 90,1 90,1 . 90,1 90,1 . 90,1
op1 Opn Oxy OTm ayl OYm
89]12 001.2 9010 .. 9015 061 . O
op1 Opn oz 0T m, Oy1 OYm
nm .. 00nm 0pm .. nm Opwm .. O0pm
L Op: Opn Oz 0T, Iy1 OYm |

where p; is the pressure of cell ¢ and {x;,y;} are the coordinates of junction j.
VF is of size (n 4+ 2m) X (n+n-m).

We can now pose our problem as a Newton system VF(t')z’ = —F(t’) with
update step t'* 7' = t'* + z’*. Here

Z=[Ap -+ Ap, Az - Az, Ay - Ay]T

is a vector of changes to apply to the pressure of cells and coordinates junctions.
When the iterative method has brough us sufficiently close to the root we use
that foam state as the output of the current step of the quasi-static simulation.
We can measure how close to the root we are either as ||z’ ||, the largest change
that must be applied to the foam, or ||F|, the largest deviation from the
optimal shape. The second method, ||F||~, can be problematic however, as
the deviation is not, in general, garanteed to tend to zero. Only in an infinite,
perfectly honey-comb shaped foam will we get F' = 0.

Working with F' and VF quickly becomes infeasible. Computing VI is on
the order of O(n? + m?), a task that will take a very long time as n and m
increases significantly. However, if we accept a slightly subobtimal solution and
that we may have to compute more iterations, we can reduce the scope of the
problem significantly. If we examine a foam sample, it becomes clear that the
influence a given cell has on a given junction dwindle rapidly the further the
cell is from the junction. Taking this to the extreme, by only gathering the

20

A Vertex-Based Model of Dry Foam The quasi-static simulation

influence of the three cells touching the intersection (see Figure 3.1) we can
replace F' with one function per junction:

AT — A
fe)=1| % 9_’6 =0 (3.1.4)

_g

23 J

3 —th

where t = [p;, pj, Pk, 2, y]T, pijk is the pressures of the three cells intersecting

in the junction, and {z,y} is the coordinates of the junction. We simply cherry-
pick the three cells that contributes the largest change to the junction, which
will inevitably be the three cells which share the junction. This is equivalent to
considering VI a sparse block-diagonal matrix, with zero in all elements except
on the diagonal. The per-junction Jacobian is then

r 0A; 0A; JA; 0A; 0A; A
Opi Op; Opk Oz Oy
A, QA; 9A; 9A; 04,
Opi Op; Opk ox dy
Ay 94y 0Ar O0Ar 0Ay

* _ op; opj Opk ox Jy

V) =1 66 o0 o0 o6 o0 | - (3.1.5)
op; op; Opg ox dy
o6, o0, o6, 06, o,
op; Op; Opk ox Jy
00, 90, 00, 00, 00y

L Bpi ap]‘ 8pk ox 6y d

Computing one V f7 per junction is now reduced to a task on the order of O(m).
However, we must be clear of the cost of replacing F' with f;: We can no longer
hope to find the globally stable foam shape, but we can find a locally stable
shape.

There is an observations that can be made about V fj’." which we can put to
use later: Vf7 is dense and have no zero entries. We can realize this by simplely
observing that any change in cell pressure or junction position will result in a
positive or negative change in area and angle; they cannot remain unchanged
(the world cell, which I will cover later, is an exception to this which must be
handled as a special case.)

3.1.1 Finite difference

We do not have an analytical expression of Vf7, so instead we use a finite
difference method [8] to approximate the partial differentials. For example, we
can approximate

0A; Af — A7

apj - 2h

as a central difference, where A and A; is the area of cell i calculated with the
pressure of cell p; increased and decreased respectively by h € RT. Similarly, in

or 2h ’

A;r and A; is the area of cell ¢ calculated with the = coordinate of the junction
we are equilibrating increased and decreased by h.

21

A Vertex-Based Model of Dry Foam The quasi-static simulation

3.1.2 Solving the linear system

We can now solve the linear system

Viiz=—f;, (3.1.6)
where z = [Api,Apj,Apk,Az,Ay]T, to get the changes in cell pressure and
junction position to apply to equilibrate this particular junction.

The system in (3.1.6) is over-constrained with 6 equations and 5 unknowns.
By observing the system we realise that this is because the three angles are
dependent: Given two angles we can calculate the third. Formally

0, =21 — (6p + 0.) for a,b,c € {i,j,k} where a #b # c .

We can therefore omit one of the equations, to get a system of five equations
and five unknowns:

AT A
AT - A

fi= z‘éﬁ*Ak =0,
% _g
3 — 05

and

0A; 0A; 9A; 0A; dA;
Op; Opj Opr ox Jy
0A; 9A; DA; 0A; OA;
Ipi Op; Opr ox dy
Vf 0AL 0AL OAL DAL DAL
J op; Op; Opk Ox oy ’
o0, 09, 06, 08, 06,
Op; Opj Opk Ox 9y
00; 06, 96; 99, 06;
Ipi Ip; Opk ox dy

which allows us to solve

There exists many methods for solving systems of the form Ax = b, however,
given that the system is limited in size (A is of size 5 x 5,) I have found that a
simple Gauss-Jordan reduction [17] is a sufficient, and indeed a very fast, way
to find a solution. The solution is simplified further by our earlier realization
that the Jacobian V f; is dense and non-zero, allowing us forego rearranging the
matrix during reduction. Appendix B.1 lists an implementation example.

There is a slight chance that V f; may be singular. However, this requires
a completely symmetric junction which is unlikely to occure naturally. I have
therefore chosen to disregard this possibility in favor of performance.

3.1.3 Updating the foam

After solving the system of equations for a given junction, the result is a set of
changes to apply to the neighborhood of that junction in our Newton update
step:

thHl = th 4 2%

22

A Vertex-Based Model of Dry Foam Computational mesh

The junctions coordinate x = {z,y} must be changed to
x {z+ Az,y + Ay}
and the pressure in each of the three surrounding cells must be updated:

Di < pi + Ap;
pj < pj + Ap;
Dk < Pk + Apg

However, here we must realise a problem with updating junctions separately and
in isolation: With no information about the contribution from other junctions
in a cell, all junctions may result in an increase or decrease in pressure of the cell
leading to a sudden large increase/decrease in cell pressure. This is undesirable
both physically, visually, and computationally. The solution is to normalize the
Ap contribution by the number of films in a cell. In other words, the pressure
update becomes

Ap;

Lz

Di & pi +

Apj
pj pj + n;
Apy
Dk < pr + ——
ng
where n; ; is the number of films in cell 4, j, and k respectively. This was
suggested by Weaire and Kermode in [26], but was not used by Kelager in [13].
For a physical explanation of this normalization step, consider a cell with n
films. The total amount of gas transported into or out of this cell is proportional
to the number of films. Therefore the amount of gas transported over any single
film is an n-th part of the total amount of transported gas.

3.2 Computational mesh

Before we can simulate a foam, we must define a computational mesh to work
on. The obvious choice is to use a polygonal mesh, with cells as polygons,
films as edges, and junctions as vertices. This has indeed also been the mesh
used in former implementations such as Weaire and Kermodes [26] and Kelagers
[13]. Tt is easy to conceptualize and there is an almost direct mapping between
computational mesh and visual rendering. However, as shown by this author
in [24], using the dual of the foam as the computational mesh has some clear
advantages. In the following I will define the dual foam mesh and demonstrate
how the foam simulation can benefit from it.

3.2.1 Discretizing a foam

To discretize a foam to create the dual foam mesh is equivalent to finding the
dual of the foam when considered as a polygonal mesh. In the following I will
refer to the polygonal (curved-edge) foam mesh as the primal.

23

A Vertex-Based Model of Dry Foam Computational mesh

Figure 3.2: A section of a foam sample showing the (a) primal mesh, (b) dual mesh,
and (c) the dual superimposed on the primal. While the primal mesh consists of
irregular n-gons, the dual is guaranteed to be a triangle mesh.

To establish a common vocabulary I will describe the dual as a simplical
complex. For an introduction to simplical complexes see for example [6, 7].
I will adopt the notation that given an n-dimensional simplical complex, ¥,
where 0 < k < n, are the simplices of the simplical complex and py : Z — RY
is a map from a k-simplex to a tuple of scalars. The set of 2-simplices are F
(triangles), the set of 1-simplices are E (edges), and the set of 0-simplices are
V (vertices). I will not need simplical complex of higher dimension than three.

The dual of a mesh can be found by placing a ¢ in each face of the primal
and then connect adjacent ¢%’s with o!’s as illustrated in Figure 3.2 to form
02’s [24]. Note how each edge in the primal is mirrored by a o! in the dual.
Indeed it holds that |Fprimall = |Vdua1‘7 |Eprima1| = |Edua1‘7 |Vprimal| = Iqual|~
(Here I have abused notation slightly. The primal is not a simplical complex
as faces have more than three indices.) From this it follows that no topological
information is lost.

From the above, it should be clear that in the dual mesh, cells are vertices
and junctions are triangles, where each vertex in the triangle is one of the three
cells surrounding the junction. From this we can derive the first advantage of the
dual mesh: The Plateau rule that a junction must be formed in the intersection
of exactely three cells are implicitely true. This may appear trivial, but the
consequence is that we are incapable of constructing a foam that violates the
Plateau rule, which again removes the burden of having to explicitely check that
we do not accidentially create an invalid foam.

For the dual foam mesh to work we must abandon our usual preconception
that positions should be stored at vertices and face properties in faces. In
the dual mesh, junction coordinates are stored in o2 and cell pressure in ¢°.
Formally, we maintain two maps

po:[0,n) = {p} €R
and
p2: [0,m) = {z,y} € R?

where n, m is the total number of 0¥ and o2 respectively and p is a cell pressure.
In contrast to common computer graphics usage of meshes, we can say that the
dual foam mesh ceases to have a geometric interpretation and becomes a purely
topological construction; it can be helpful to consider the dual foam mesh as a

24

A Vertex-Based Model of Dry Foam Computational mesh

Figure 3.3: A film is flipped in a T1 operation and the resulting junctions are equi-
librated. The dual mesh is shown as gray lines with the two ¢ participating the the
operation highlighted.

graph with junctions and cells as connected leafs. Should we ever need to, we
can return to the primal simply by finding the dual of the dual foam mesh.

3.2.2 Topological changes

In the primal, topological changes are complicated operations as documented
by Kelager [13]. However, in the dual, the operations are considerably simpler.
Figure 3.3 demonstrates the T1 operation in the dual mesh. Note how the pre-
T1 mesh topology in (a) is two o2 faces, joined on the shared film, with two free
o0 faces, giving us four o¥ faces, two of them connected by a o!. During the
T1 process we simply change which two ¢° are connected, conceptually flipping
the o! 90°, after which we get the topology illustrated in Figure 3.3 (b).

The T2 process, as shown in Figure 3.4, involves three o2 faces, giving us
four o faces, one of which is discarded in the process. A single o2 is then
constructed from the remaining three o°.

The two cases given are unique and the only topological configuration the
dual computational mesh can have for the given operation to be possible. Like-
wise the post-operation topological configurations are also unique. Note how in
both operations the boundary ¢® are fixed, only the connectivity is changed:
The operations are deterministic, making them trivial to implement.

The last necessary piece of information we need to perform the topological
operations are how to calculate new coordinates for the junctions involved. Re-
call from Section 2.3 that the operations are near-instantaneous and that we
can not make any assumptions about the state or dynamics of the foam during
the operation. If we turn this argument around we can freely choose what hap-
pens in the foam during the operation and are therefore free to create a scheme
for calculating junction coordinates. The only consideration is that after the
operation the foam should be in a form that can be equilibrated. I have chosen

25

A Vertex-Based Model of Dry Foam Computational mesh

(a)

Figure 3.4: A cell is collapsed in a T2 operation and the resulting junction is equili-
brated. The dual mesh is shown as gray lines with the three o participating the the
operation highlighted.

a purely geometric scheme where the new coordinates are calculated based on
the old coordinates. The T2 process simply calculates the average of the three
old coordinates to produce the new coordinate:

1
chwzg(i+xj+xk) .

The T1 process flips a film 90°. If the film connects junctions x; and x; then a
vector

€perp = X5 — X; ,

where € = {x,y} = {y, —x}, is perpendicular to the film. The two new junction
coordinates can then be calculated as

X; + X; €her
X, = J 4 pp7

2 2
Xp = # _ ep;fp

Note that the distance from x, to x; is the same as from x; to x;. The described
scheme closely matches the one used by Kelager in [13].

While we can perform T1 operations on any film and T2 operations on any
three-sided cell (with some limitations, see Section 3.6,) in the quasi-static sim-
ulation we need a fixed condition for when each operation should be performed.
In a real foam, T1 operations happen when two junctions have joined, or in
computational terms, when [|x; — x;|| = 0. However, in computer physics, such
a hard limit is not usable, the finite precision of the floating point representation
makes a precise limit impossible. We therefore introduce a T1 threshold value
such that we perform a T1 operation when ||x; — x;|| < dt1, where dr; € R is
close to zero [15]. Likewise, T2 operations happens when all the gas has diffused
out of a cell. In computational terms, Ao = 0. Again, this hard limit is unus-
able, so we introduce a T2 threshold value so that we perform a T2 operation

26

A Vertex-Based Model of Dry Foam Angles and areas

when Ace < 012, where 12 € RT is close to zero. The precise value of ér; and
012 depends on the scale of the foam we are simulating.

In [13] Kelager treated T1 and T2 operations as two discrete occurances
and, as Kelagers work was the basis for this thesis, so have I. However, in
many simulations T1 and T2 operations are linked, such that T2 operations
are performed when a T1 operation is performed on a film in a three-sided
cell [30, 12]. This simplifies the algorithm but, as we shall see in Section 3.6, in
some cases it limits the simulation.

In the examples given in this thesis, d71 and d12 was chosen to match the
desired behavior of cells disappearing when “tiny” compared to the full foam
sample. However, if an analytical model is desired, Weygand et al. [30] suggested
using the average cell area as a comparative measure:

1
2Ai0ta1 \ 2

6T1a< ttl))
m™m

where Aiota is the total area of the foam, m is the number of junctions, and
a € RY is a user-supplied constant!. Weygand et al. used the model where T2
operations are a consequence of T1 operations and in that case

ot = 5%1

since a T2 operation will happen when the length of one side of the three-sided
cell is less than 617 and two sides less than 267;.

3.3 Angles and areas

To equilibrate a junction, we will need to calculate the angles seperating the
three films intersecting and the areas of the three cells adjacent to the junction.
In the 2D plane, these values are relatively easy to calculate using trigonometry.

For now, let us consider pairs of cells that share a film. The shared film is
given by two junctions x¢ and x; and a signed radius of curvature r as computed
from Equation (2.2.1). Let x; be a point equidistant from xg and x; such that
AxpX1X; is an isosceles triangle with two sides of length r and one side of length
d = ||x1 — xg||, as illustrated in Figure 3.5. The angle w is given by

w d d d
CAWE —osin—1 [L for -~ € -1:1] . 3.1
3111(2) 3] =w sin <2|r|> or 3] € [-1;1] (3.3.1)

The input range of sin™! dictates that 0 < d < 2|r|, which can not be garanteed
in a random foam. Therefore we must ensure that d does not exceed 2|r| when
performing this computation, for example by clamping the value. The angle
B = 75* is simply the remaining angle in the triangle. Finally, because vectors
x; — Xo and x; — x; must be normal to the circle with radius |r| and center in
x¢, it follows that a + 3 = 5 and therefore « = %. However, as r arose from
a pressure difference, r may be negative. We must therefore preserve the sign

of r when calculating o before we can use it for both cells in the pair we are

IWeygand et al. divided a by nyirtual +1 which was the number of virtual vertices inserted
between junctions. For our use nyirtual = 0.

27

A Vertex-Based Model of Dry Foam Angles and areas

Xp X

==
==

w

X;

Figure 3.5: The necessary values for calculating the angles w and a.

considering:

o= Sgn(r)% = sgn(r) sin~* <2dr|) for ir €[-1;1] (3.3.2)

where

(@) 1 forz >0
sgn(x) = .
& -1 forx<0

Now, given a we can calculate the angle between two films intersecting at
a junction. Let x; be a junction and x; and x; be two adjacent junctions
as illustrated in Figure 3.6. Given the straight line edges e; = x; — x; and
e, = X} — X;, with arc radius r; and r, respectively, we can calculate the angle

;= cos™! (ejek> (3.3.3)

lejllflexl

and from this the angle separating the two edges

b = {wi for det(e;,ex) >0 ’ (3.3.4)

2n —qp; for det(e;,ep) <0

where det(a,b) = a”b¥ — a¥b”. (3.3.4) covers the case where the angle sepa-
rating the two films are greater than 180°, which can happen during the equi-
libration process when a cell becomes concave, in which case (3.3.3) is not
sufficient [13].

By (3.3.2) we get the arc angles

- ||ej||)
o = sgn(r;) sin 3.3.5)
J (J) <2|rj (
and
1 Nlexll
=5 3 . 3.3.6
ay = sgn(ry) sin <2|7”k|) ()

28

A Vertex-Based Model of Dry Foam Angles and areas

Figure 3.6: The necessary values for calculating the angle 0;.

Combining (3.3.4), (3.3.5), and (3.3.6) we can calculate the full angle
91' = ¢’i — Oy + oy . (337)

Note the difference in sign: In Figure 3.6 sgn (r;) = sgn (), but the arc caused
by r; decreases ¢; while the arc caused by 7 increases ¢;. Therefore we must
subtract a; and add oy and, since « is signed, we get correct addition of the
angle.

Now that we can calculate the incident angles at a junction, let us turn to
calculating the area of a cell. We do this by first calculating the area of the cell
as a straight line polygon, then adding the (signed) area of the arc segments on
the edges. The area of a single triangle Ax;x;xy, is

Ap = - det(x; — x4, X — X;)
(3.3.8)

[N R

((xf = %)} —xf) = (= x]) (xk —x7)) -

The area of a cell with V' junctions, for convenience and without loss of generality
indexed as xg...y_1, is then

V-2

1
Apoty =) Z det(xx — X0, Xk+1 — Xo) - (3.3.9)
k=1

Please note that this triangular tesseleation of the cell is in no way related to
the computational mesh. Rather, Apoly is a tesselation of the primal mesh.

To calculate the arc areas, consider again the isosceles triangle Axgx;x;
defined earlier and the circle with radius |r| centered in x;. The arc area A is
the area of the sector of the circle defined by angle w minus the area of Axyx1x;:

1 1
A= sgn(r)aTZw - sgn(r)§7'2 sinw

1
= sgn(r)§r2 (w—sinw) .

(3.3.10)

29

A Vertex-Based Model of Dry Foam Boundary conditions

Again, to preserve the symmetry between cell pairs, the arc area must be signed.
The total arc area of a cell with F films, for convenience and without loss of
generality indexed as 7g...p_1, is then

E-1
1 .
Apre = kz_o Sgn(r)ir,% (wg — sinwy) (3.3.11)

Finally, the total cell area is

A= Apoly + Aae - (3.3.12)

3.4 Boundary conditions

Until this point we have worked under the implicit assumption that the foam
sample we are simulating is infinite in all directions. However, to simulate a
foam on a finite computer we must impose some constraints on the boundary.
The simplest boundary condition is to fix the boundary junctions, which is akin
to sealing the foam in a hermetically sealed container. The fixed boundary
condition is generally undesirable as the fixed junctions doesn’t allow the foam
to evolve freely and thus can introduce statistical errors and instabilities. It
most be noted that fixed boundaries are common in real world observations of
foam. For example, Stavans and Glazier [22] reports sealing a foam in a plexi-
glass box, but that they disregarded cells touching the walls when conducting
measurements.

Under periodic boundaries the foam is allowed to evolve freely, but it wraps
around on all axis, creating an infinitely replicating foam that fills all available
space. Periodic boundaries have been used in many foam simulations as it sta-
tistically emulates an infinite foam sample [25, 26]. If the goal of the simulation
is to collect statistics for different foams then periodic boundaries are the best
choice.

In [13] Kelager introduced a free surface boundary condition, a new concept
in foam simulation. By introducing a special cell, which he named the world (or
ghost) cell, a free surface can be constructed, creating a finite, freely evolving
foam sample. The world cell emulates the effects of the environment surrounding
the foam by having infinite area and unit pressure. All boundary junctions have
the world cell as one of the three cells surrounding it and in the simulation the
world cell is treated as any other cell except that it never changes pressure and
it is not rendered in the visualization. The free surface boundary condition is
the best choice if the goal of the simulation is visualization. In this thesis I have
used the free surface exclusively and in Chapter 6 I will examine the effects of
the free surface on the statistics of foam samples.

To use the free surface boundary condition we must accommodate for the
world cell when equilibrating a junction using (3.1.7). If one of the three cells
surrounding the junction is the world cell, we replace the corresponding row and
column in Vf; and f; with zero. For example, if cell j is the world cell then the

30

A Vertex-Based Model of Dry Foam Hard constraints

Figure 3.7: A small foam sample with the free surface boundary condition. Note how
all boundary cells have a higher pressure than the surrounding environment, causing
all boundary films to curve out of the foam sample. This closely matches the observed
physical behavior of real foam.

system becomes

OA; O0A; 0A; 0A;
opi 0 Opr ox oy Az— - A’L
0 0 0 0 0
DAy DA, DA, 0A _
e 0 G or B z=| Al — A, | , (3.4.1)
o6, o o8 o0, o0, g
Ip; Ip ox 5} 3 ?
ob o Gy D0 D0 I _ g,
op; Opk ox oy 3

effectively reducing the system to 4 equations and 4 unknowns. Note how the
last two rows are changed from (3.1.7) so that the row with values from cell
j is the one that is left out. The result of using (3.4.1) is that junctions on
the the free surface boundary is free to move while boundary cells will tend to
have higher pressure than the world cell, causing boundary films to be convex.
Figure 3.7 shows a typical foam sample with a free surface.

3.5 Hard constraints

In the equilibration process we have already covered two constraints, described
in Equations (3.1.2) and (3.1.3). I shall refer these as soft constraints: The
relaxation process will find the solution that best satisfy them, but they can get
worse if no better solution can be found. As the number of iterations increase
we will converge towards the best possible solution. In the following I will
introduce two hard constraints. These are invariants in the simulation that can
not be violated.

Kelager used one hard constraint in [13], the In Bubble constraint, which
was an intersection test between junctions and a straight edge triangulation of

31

A Vertex-Based Model of Dry Foam Hard constraints

Figure 3.8: The three-cell neighborhood of a junction. Moving the junction outside
of the envelope of the three cells will cause the local energy of the junction to increase
as the films become longer.

the three surrounding cells. Junction positions must be subject to some form of
constraint on the envolope, shown in Figure 3.8, in which the junction is free to
move. This was observed by Kelager, who used the In Bubble intersection test
to ensure that junctions did not move outside the area enclosed by the three
surrounding cells. There is a number of problems with this approach: 1) It is not
physically founded, but a stop-gap measure to counter an unintentional behav-
ior. 2) To simplify implementation, only a straight edge polygonal tesselation of
cells where used in the intersection test, which makes the constraint unsuitable
for boundary cells which will typically have a film with a small radius seperating
the foam from the environment (see for example Figure 3.7.) 3) Two-sided cells
(described below) can not be handled at all using the intersection test, as they
can not be tesselated. 4) Even with the intersection test, junctions could still
make large sudden jumps if the neighboring cells where large.

3.5.1 Orientation Invariant Constraint

The first constraint I will introduce ensures that the intrinsic geometric orienta-
tion of junctions are never inverted. Figure 3.9 shows two foam configurations
that results in a change in the intrinsic geometric orientation of a junction. In
(a)-(b) a junction moves from a valid to an invalid state. Note how the three
films in the junction changes orientation. In (c¢)-(d) a junction moves to bring
an incident junction into an invalid state. To create a definition of these invalid
states in our model, consider the six permutations of films in Figure 3.10. We
define that, when visiting the three films of a junction, we shall always visit
them in the order 0 — 1 — 2 and, geometrically, we shall always visit them
in a counter-clockwise order. This is equivalent to the intrinsic orientation of
a triangle in a triangulated mesh and this indeed matches the order of films
in a junction in the dual computational mesh. Formally, given three films f,
f1, and fy intersecting in a junction, the angle 6y between films fy and f1, and
the angle 0, between films fy and fy, with the angles calculated with Equation
(3.3.7), it must always be true that 6y < 6;. This is the orientation invariant

32

A Vertex-Based Model of Dry Foam Hard constraints

AN

/ 7/
(e) () () (h)

Figure 3.9: Without constraint on the relaxation process invalid geometry might arise.
The images are taken from inside a single time step, from different iterations of the
quasi-static equilibration process. (a)-(b) Locally inverted angles. (c)-(d) Secondary
inverted angles. (e)-(h) With the Orientation Invariant Constraint enabled no inverted
angles are formed.

of the junction. If the orientation invariant is violated, we say that the junction
has become inverted. From this we can formulate a constraint on the movement
of junctions:

Axiom (Orientation Invariant Constraint). A process which changes the coor-
dinates of a junction must maintain the orientation invariant for that junction
and the three incident junctions.

Figure 3.9 (e)-(h) depictes the same foam but with the Orientation Invariant
Constraint enabled. Now the junction movements are constrainted and no junc-
tions become inverted. It is, of course, vital that the foam is initialized to be in
a form where the orientation invarient is true for all junctions. The contraint
can not be used to cause inverted junctions to become valid.

To realize why junctions can become inverted and why the Orientation In-
variant Constraint is necessary, consider again Figure 3.10. We can calculate the
turning angle between each pair of incident films with (3.3.7), but in doing so
we must calculate the straigt edge angle between the films with (3.3.4) and it is
this angle that is problematic. As long as the orientation invariant is true, ¢ will
be the shortest positive angle between the two film, but if the junction becomes
inverted (3.3.4) will give the positive long angle, not the negative shortest angle
that would be necessary for the relaxation process to “untangle” the inverted
junction. In other words, (3.3.7) is only sufficient as long as junctions can not
become inverted, which is why the OIC is introduced.

33

A Vertex-Based Model of Dry Foam Hard constraints

YyYYYYYYyY
2 1 0 1 2 0
Figure 3.10: The six permutations of three films intersecting in a junction. Note how

the first three and last three are rotations of the same ordering. Here we define the
counter-clockwise orientation (the first three) to be the orientation we expect.

The Orientation Invariant Constraint fulfils the same function as Kelagers
In Bubble constraint by keeping junctions from moving outside the three-cell
envelope, but remains functional even with curved films. Like the In Bubble
constraint, the Orientation Invariant Constraint is not physically founded, but
a geometric solution to the problem.

3.5.2 Energy Decay Constraint

While the Orientation Invariant Constraint solves the problem of junctions be-
coming inverted and moving outside the envelope of the three surrounding cells,
it does not prevent large jumps in junction position. In the following I will
show a physical constraint that solves this problem by limiting the movement
to always cause a decrease in potential surface energy. From Section 2.5 we
know how the energy of a foam can be estimated and that the total energy of
the foam can not increase over time.
The length of any given film in the foam can be calculated as

l=wr, (3.5.1)

where w is calculated using (3.3.1) and r is the arc radius of the film. From
Equation (2.5.3) we can then compute the energy of a single film as

Egim = 2vywr (3.5.2)

and the energy of a cell as

Eeonl = 272%'7“1- , (3.5.3)

where 4 runs over the films of the cell. Lastely, the total energy of a foam is
Erotal = 27 > _wiri , (3.5.4)
i€E

where E is the set of all films in the foam. Now, given an energy measure, we
can formulate a new constraint on the equilibration process:

Axiom (Energy Decay Constraint). A process which changes the geometric or
topological configuration of a foam must always result in a state of lower energy:

after before
Etotal < Etotal .

34

A Vertex-Based Model of Dry Foam Hard constraints

In a novel approach?, we can use this constraint to improve the stability
of the foam simulation: Only changes which lowers or preserves the energy
of the foam network are allowed, resulting in either no change or a net gain in
equilibration after each iteration. Without such constraints, the local relaxation
of a junction can result in a violent change to the junctions coordinates or the
pressure of the surrounding cells. By limiting the changes to obey the Energy
Decay Constraint we can remove these violent changes, which will result in an
increased stability of the simulation.

The Energy Decay Constraint axiom deals with the total energy of the foam.
However, as with the relaxation process, where we only hope to reach a local
equilibrium, our goal is only a local decrease in energy which we hope will result
in a global decrease in energy. When we can limit our attention to local changes
we can consider each step in the equilibration process separately.

Coarsening

The diffusion process, as governed by Equation (2.4.5), does not directly affect
the foam, but only the cell target area. Only during the equilibration process
does the cell target area translate to a change in the foam. We need therefore
not examine the energy during coarsening, as it will not change during this part
of the simulation.

Topological changes

First, let us examine the topological changes, as described in Section 3.2.2. It is
important to first realise that the topological operations are purely mechanical,
forced movement of the involved junctions. After a T1 or T2 process, the junc-
tions involved will not be in equilibrium.

I will claim that we can not measure the energy of the foam directly follow-
ing a topological change and get a meaningful result. Rather we must perform
the topological operation and then relaxe the involved junctions into an equili-
brated state before it makes sense to measure the energy. To understand this,
we must realise that the topological operations are not physically based, but
rather mechanical approximations to observed behavior. What happens during
the topological operation can be more or less arbitrarily defined by the im-
plementation of the simulation, as long as the resulting foam does not violate
the Plateau laws. It is only later, after equilibration, that the foam assumes a
physically based shape.

The result of this discussion is that we can not use the Energy Decay Con-
straint to allow or discard topological changes. We must perform all changes
and then later, during equilibration, examine whether the energy decreases or
not. This is an inherent defliciency in the Vertex Model: Because we do not have
a proper physical model for the behavior of foam during topological changes we
must approximate it and, as a result, we can not apply physical reasoning to
the immediate result of topological changes.

2To our knowledge, no one has explicitly used energy as a constraint in a foam simulation.

35

A Vertex-Based Model of Dry Foam Handling two-sided cells

Equilibration process

It is in the equilibration process, where we attempt to find a stable foam shape,
that the Energy Decay Constraint can be made to make a difference. After
calculating the Jacobian Vf; and solving (3.1.7), we get a vector of changes
that can be applied to neighborhood of a junction as described in Section 3.1.3.
There are two discrete changes that must be performed: Moving junctions and
changing cell pressure. I will examine each in turn.

From Figure 3.8 it is appearent that any large change in junction position
will cause the local energy of the junction to increase as the length of the
three films meeting in the junction increases. This follows directly from the
triangular inequality: Given an arbitrary point, the combined distance from the
three corners of a triangle will be least when the point is inside the triangle.
From this follows that if we move a junction from inside the triangle defined by
the three incident junctions to outside this triangle, the combined film length
will increase. By only allowing junction movement that causes the energy to
decrease, large sudden jumps are disallowed. At the same time we can remove
the computationally costly intersection test.

The other aspect of the equilibration process is cell pressure updates. At
first glance it seems reasonable that we can apply the Energy Decay Constraint
to cell pressures in the same fashion as with junction position, that is, the
local energy of a cell must decrease when the pressure is updated. However,
this is unfortunately not possible: The diffusion process will cause some cells
to shrink and others to expand. Globally and statistically the energy of the
foam will decrease, but when only examining local changes to cells, we can
not use the Energy Decay Constraint. We can simply not determine locally if
the expanding cell is counteracted by contracting cells elsewhere in the foam.
A possible solution to this would be to make the Energy Decay Constraint
dependent on the valency (number of films) of the cell: If the valency is less
than six then the energy must decrease, if the valency is greater than six then
the energy must increase, else the energy must remain constant. I have however
not tested this.

3.5.3 Imposing the constraints

The purpose of the two presented constraints is to limit the movement of junc-
tions. As they represents invariants that must be true before and after the
movement, they should be enforced on each junction as it is updated with the
method from Section 3.1.3. If the constraints are violated the change should be
rolled back. Later, when we gather everything into a single algorithm in Section
3.7, we will see in more details where in the process the constraints come in.

3.6 Handling two-sided cells

An aspect of the Vertex Model which has so far not been well described is how
to handle the case where a topological change (T1 or T2) causes a three-sided
cell to collapse into a two-sided cell. T'wo-sided cells are pathological and Weaire
and Kermode noticed that in a real foam, two-sided cells have extremely short
lives [26]. Two-sided cells can only form as floating on the film of another, larger

36

A Vertex-Based Model of Dry Foam Handling two-sided cells

cell and random fluctuations in the foam will quickly cause the unbalanced two-
sided cell to slide along the film it floats on until it comes to rest against another
cell at which point the cell becomes three-sided again. Figure 3.11 illustrates
the typical life cycle of a two-sided bubble.

Weaire and Kermode described two-sided cells in [26], but concluded that
they will not form in a real foam and that if they do form, they are meta-stable,
but short lived. They showed that the surface energy in the foam will increase
if two-sided cells are formed and used this as proof that two-sided cells can not
occur naturally. They backed this up by experimental observations of real foam
samples that showed no two-sided cells. In the Vertex Model, two-sided cells
will form as a result of the purely mechanical process of T1 and T2 operations,
however, as I demonstrated in Section 3.5.2, we can not garantee that the local
energy of a foam will decrease during T1 and T2 operations. We can therefore
not prevent two-sided cells by observing energy changes.

Weygand et al. touched upon two-sided cells in their discussion of topological
operations in [30]. They introduced a new topological operation, T3, which was
the collapse of a two-sided cell into an unbroken film. They claimed that a T2
process could be decomposed into a T1 operation followed by a T3 operation.
However, they made no mention of handling two-sided cells as part of their
simulation, which must lead to the conclusion that they eliminated two-sided
cells immidiately upon formation. In the following I will derive a method that
makes T3 operations unnecessary.

The preceding discussion leads us to two options: We can either totally
disallow two-sided cells from forming, or we can make the model robust enough
to gracefully support two-sided cells. The first option is simple: Whenever we
are about to perform a T1 or T2 operation we measure the valency (the number
of films) of the cells which will loose a film (two cells for a T1, three cells for a
T2.) If the valency is less than four we abort the topological operation. In this
way, no two-sided films can ever form. However, this is not a tenable solution;
preventing cells from collapsing in T2 operations can lead to very small cells,
impeding the evolution of the foam and giving rise to numerical instabilities [26].
For example, in Figure 3.11, if the small cell in (a) is not allowed to collapse, then
the cells will continue to shrink (as a result of diffusion) but never disappear,
impeding the behaviour of the larger cells.

The second option is therefore the most desirable. There are three aspects of
the model we must examine to determine if two-sided cells will cause problems:
The von Neumann diffusion, the Jacobian V f; calculation, and the computa-
tional mesh. The von Neumann diffusion is trivial to verify. Equation (2.4.5)
will cause two-sided cells to quickly shrink, which is desirable so that they
quickly collapse. There are two sides to the Jacobian calculation: Calculating
film turning angles with (3.3.7) and cell areas with (3.3.12). When calculating
the film turning angle, the angle ¢; = 0 as the two straight line edges becomes
parallel in (3.3.4), however the arc angles a; and «ay, are not affected. In other
words, the angle calculation can handle two-sided cells unchanged. When cal-
culating cell area, we can not construct a full triangle inside the two-sided cell
so Apoly = 0, however, the arc angle A, is not affected. Therefore, the cell
area can be calculated for two-sided cells. From these results we can conclude
that the presented methods for calculating angles and areas are fully compatible
with two-sided cells.

The last issue is whether the computational mesh will support two-sided

37

A Vertex-Based Model of Dry Foam Handling two-sided cells

AR
ENES
AR

Figure 3.11: The typical life of a two-sided cell. (a) As the smaller of the two boundary
cells collapses in a T2 process, (b) a two-sided cell is formed. (¢) Random fluctuations
in the foam will cause the cell to slide on the film of the larger cell, until it is near
a corner. (d) A T1 process then occures, causing the cell to gain a film to become
three-sided again. (e) Diffusion causes the three-sided cell to shrink and (f) finally, the
now three-sided cell (eventually) collapses in a T2 process. This sequence covers 12
time steps of % second each, equating to less than half a second of simulation. The
two-sided cell lasted for two time steps before becoming three-sided again.

38

A Vertex-Based Model of Dry Foam Handling two-sided cells

cells. At first glance the dual foam mesh can handle them implicitly (one-sided
cells, on the other hand are not be supported,) however, there is a subtle issue
that must be addressed. The problem was brought to light in [24] and has to
do with the connectivity of the dual mesh graph: For two sided cells to appear
there must be two discrete films separating the same two cells in the foam.
In terms of the underlying simplical complex there must be two distinct o'
faces with the same pair of indices (in graph terms there must be two distinct
edges connecting the same two leaf nodes.) This violates the discrete manifold
constraints. However, if we relax the discrete manifold requirements and allow
more than one film between the same cells, then the computational mesh fully
supports two-sided cells.

3.6.1 Two-sided cell collapse

One further issue we must address is that, as mentioned, two-sided cells can not
be allowed to collapse, as this would lead to an invalid foam. There are two
aspects to this: Topological changes must not be allowed to reduce the number
of films in a two-sided cell and we must ensure that two-sided cells eventually
become three-sided and collapses. The first aspect can be handled in the same
way as we can prevent two-sided cells, as described above, by disallowing T1
and T2 process on cells with a valency of less than three. The second aspect,
ensuring that two-sided cells will collapse, is more challenging. To match the
observed physical behavior of real foam as described in [26], I have chosen to
move the two-sided cell along the shortest neighboring film until it is near enough
a junction that a T1 operation will cause it to gain a film. It should be noted
that this is not physically founded as such, but a practical solution to a problem
that mimics the observed physical behaviour.

To find the shortest neighboring film, (3.5.1) can be used. Given the shortest
film length [, we can calculate an angle

=61

6.1
a ma— (3.6.1)

where r is the arc radius of the film and é1; is the distance threshold of a
T1 operation. That is, if [< §1; then the film is elegible for a T1 operation.
The angle a represents how far we should rotate the two junctions in the two-
sided cell to make the shortest neighboring film elegible for a T1 operation, as
illustrated in Figure 3.12. Let

Xm = 5 (x+x0)"

be the midpoint of the straight edge between a junction x in the two-sided cell
and the junction xg we are moving toward. The vector

e={x¥—x{,—x"+x{}
is perpendicular to a vector from x to x¢ and of the same magnitude. Let

e
Xe =X + k7, (3.6.2)
el

39

A Vertex-Based Model of Dry Foam The complete model

Xp

Figure 3.12: The necessary values for moving a cell along an film.

where

S— T

be the center of the circle with radius » where x and xg lies on the border. We
can now calculate the new position of the junction as

x=%.+R(a) (x—x¢) , (3.6.3)

where

R(6) = { cos¢p —sing]

sin ¢ cos ¢

is the normal 2D rotation matrix. By applying (3.6.3) to both junctions in the
two-sided cell we slide the cell along the film of the supporting cell to come to
rest in distance éT; from the corner junction xg, but still preserve the distance
between the two junctions in the two-sided cell.

At the next T1 opportunity, the two-sided cell will then undergo a T1 op-
eration to become three-sided and then, eventually, collapse in a T2 operation,
as illustrated in Figure 3.11.

3.7 The complete model

Now that we have covered all aspects of the Vertex Model of dry foam, we can
gather and summarise into an algorithm. I will use the notion of a “virtual
time,” where simulation time is discretized in a sequence of discrete time steps
of length At. A single time step proceeds as following:

1. For each cell, update target area based on von Neumann diffusion.
2. For each two-sided cell, move the cell to nearest corner.

Perform topological operations.

L

For each junction, calculate V f;z = — f;, solve for z.

5. For each junction, calculate local energy FEhiefore, update junction based
on z, calculate local energy FEatter. If FEafter > Epetore Or if the junction
has become inverted, discard changes.

6. For each cell, update pressure based on z.

40

A Vertex-Based Model of Dry Foam The complete model

for each c in Cells do
AT < dif fusion(c, At)

if valency(c) = 2 then
move(c) // See 3.6.1
end
end

// Per form topological operations, see 3.2.2

for each j in Junctions do
fj < calculate_constraints(j)
V f; < calculate_jacobian(j)
z < solve(V f;, —f;)

Eyetore < calculate_energy(j)
// Update junction position, see 3.1.3
Eatter < calculate_energy(j)
if Fpefore < Fafter Or junction is inverted then
// Revert to old junction position
end
// Update cell pressures, see 3.1.3
end

Figure 3.13: The Vertex Model simulation algorithm in pseudo-code.

Figure 3.13 lists the algorithm in pseudo-code. All the individual parts of the
algorithm should be well understood by now, except how to advance the diffusion
process. Equation (2.4.5) defines the diffusion as change in area over time. I
have chosen to take a simple Euler step so that the diffusion with respect to
time becomes

27

AA = 5k (n—6)At (3.7.1)

and the cell target area can then be updated to
Al + AT+ AA.

There are well understood problems with using Euler integration, where we
accumulate errors over time and thus loose accuracy, however I have deemed
that in this case the Euler method is sufficient: As all cells target area will
tend to zero over time in an arbitrary foam, the errors introduced by the Euler
method will only change the speed with which the cells change area, which is
an acceptable trade off for the simplicity of the implementation.

We now have all the information we need to implement a computer program
for simulating dry foam with the Vertex Model. In the next chapter I will cover
how such an implementation can be created and demonstrate how the presented
algorithm can be parallelized.

41

Chapter 4

Implementation

In this chapter I will cover some of the practical details of implementating the
Vertex Model in a computer program. Most notable I will introduce a method
for equilibrating junctions in parallel, a performance optimization that promises
to significantly decrease the running time of the simulation. To demonstrate
the feasability of the method, I present a CUDA implementation of the Vertex
Model.

4.1 Calculating the Jacobian

As mentioned in Section 3.1.1, computing V f; is done with finite difference in
a straight-forward manner. However, to minimize the error introduced by the
finite difference calculation we use an backtracking line search scheme where h
is iteratively decreased until the error is below a set threshold. This scheme was
used by Kelager and the method used here closely matches that from [13]. Figure
4.1 lists the adaptive algorithm for computing Vf; in pseudo-code. In each
iteration we calculate the difference between V f; calculated with the current
step size and the previous V f;. If the difference is less than derror We assume that
the algorithm has converged, otherwise the step size is halved and we perform
another iteration.

4.2 The quasi-static simulation

Kelager identified that the stability of the simulation can be improved by ap-
plying a dampened line search to the Newton method. By taking smaller steps,
more iterations are necessary before the algorithm converges, but the chance
of convergence is increased [13, 19]. In the Newton method used here, this
translates into decreasing z from (3.1.7):

thtl =tk 4 rab (4.2.1)

where 7 € R is a constant used to control the step size. In general we assume
0 <7 < 1. Setting 7 = 0 will freeze the simulation, preventing any changes
to the foam. We can apply the same backtracking line search scheme to 7 as
was used in Section 4.1, in this case with the Energy Decay Constraint and/or

42

Implementation Topological operations

A7
scale < 1
error < oo
while error > forror and scale > dgcale dO
Agg +— A
A + compute_jacobian(h - scale)
AA +— A — Aq
error < ||[AA s
scale < scale - 0.5
end

Figure 4.1: The adaptive algorithm for minimizing the error in the Vf; calculation.
Z is a 5 X 5 matrix where every element is zero. derror 1S a user supplied constant,
while dscale < 1, which depends on the precision of the floating point representation,
is used to ensure that the algorithm will always halt.

the Orientation Invariant Constraint as the controlling factor. Figure 4.2 lists
the algorithm for updating junction positions with adaptive damping. The
advantage of using an adaptive damping scheme is that some parts of the foam
will inherently be more sensitive than others. Especially cells on the boundary
and cells surrounded by six-sided cells will need more damping, as there are less
freedom of movement in these areas.

As the quasi-static simulation is an iterative algorithm, where we repeat the
equilibration process until we deem we are close enough to a (local) minima,
we need to define a stopping criteria. In Section 3.1 it was mentioned that we
can measure how close to a minima we are by ||z'||c Or || F|lco. Since we do not
compute neither z’ nor F explicitly we can not use these directly, so a slightly
different approach is used: After each junction is equilibrated we measure the
maximum pressure change Ap and position change Ax. These maximum values
are stored in Apmax and Axpax. Then, in each iteration of the quasi-static
algorithm, we can calculate the difference between the maximum values from
the current and the previous iteration. If either of these difference is greater
than some given threshold then we perform another iteration. Figure 4.3 lists
the algorithm in pseudo-code. Ommited is an iteration counter used to break
the iteration if the number of iterations exceeds a user-provided maximum. This
ensures that the algorithm will always halt.

4.3 Topological operations

While the T1 and T2 operations are well understood both from a physical
and a computational stand point, the question of when and in which order to
perform said operations is less clear. As described in Section 3.2.2, T1 and T2
operations are near-instantaneous, but in the simulation we have to translate
these instantaneous events into discrete occurances that can be carried out in
sequence or in parallel. There are two sides to this question: A) Maintaining a
physically correct model and B) performance of the simulation.

In the original implementation by Kelager [13], which was later reworked in

43

Implementation Topological operations

for each j in junctions do
Jold < J
valid < false
scale <1
while not valid and scale > dgcale do
Ehefore compute,energy(j)
J-position < j.position + TAx; - scale
Etter < compute_energy(j)
if Fatter < Epetore and junctionnotinverted then
valid < true
else
j < jold
scale < scale - 0.5
end
end

if valid then
// Store TAp; - scale
end
end

Figure 4.2: The algorithm for updating junction positions width adaptive damping.
Note that although we only measure the energy of the junction position update, the
scaled damping constant 7 is also applied to the pressure changes. Here dscale is the
same constant as in Figure 4.1.

44

Implementation Topological operations

Apmax <0

AXpax < 0

Error, < 0o

errory — 00

while error, > 0ap and errory > dax do
Ap2la. < Apmax

max
AX?A(;X — AXpax
Apmax < 0
AXpax — 0
for each j in junctions do
/] Compute f;
/] Compute V f;
z < solve(V f;, —f;)
APmax < max (Apmaxa Z)
AXpax ¢ max (AXpax, Z)
end
// Apply changes
errory < Apmax — ApSld,
errory <+ AXpayx — Ax9d
end

Figure 4.3: The quasi-static algorithm with halting parameters.

[24], the approach was to test each junction for the possibility of performing a
T2 operation on one of the three incident cells. If it was, the T2 was carried out
and the next junction was examined, else the junction was tested for whether a
T1 operation was possible on one of the incident films. If so, the T1 operation
was carried out and the next junction examined. Finally, if neither a T2 nor a
T1 operation was possible, the junction was equilibrated. Figure 4.4 lists the
algorithm in pseudo-code. There is a number of problems with this approach:
First, performing T2 operations might lead to other T2 operations becoming
possible, as illustrated in Figure 4.5. Second, performing T1 operations can
lead to new T2 operations becoming possible, which in turn can enable more
T1 and T2 operations, etc. Figure 4.7 illustrates a T1 operation leading to a
T2 operation. These cascades of topological operations are not captured by the
described algorithm, which can lead us to attempt to equilibrate a badly con-
ditioned mesh with tiny cells that should have been removed (T2) or reformed
(T1) by the topological operations. Third, since we iterate over junctions we
will test each film for a possible T1 operation twice (once for each end point)
and each cell is tested for a possible T2 operation once for each junction in the
celll This adds up to a large number of unnecessary checks which slows down
the simulation.

An improved algorithm could be to first check all cells for possible T2 op-
erations and perform them as they where found, then test all films for possible
T1 operations. This is repeated until no more topological operations are possi-
ble. Figure 4.6 lists the algorithm in pseudo-code. This algorithm performes all
possible T2 operations then all possible T1 operations and then loops around

45

Implementation Topological operations

for each j in junctions do
if T2 is possible on a cell ¢ touching j then
per form_T2(c)
else
if T'1 is possible on a film f touching j then
per form T1(f)
else
equilibrate(j)
end
end
end

Figure 4.4: The original algorithm for performing topological operations in sequence.

/ / /
T —T —1(
/
\

Figure 4.5: A T2 operation enables another T2 operation which in turn enables one
more T2 operations, etc. The topological operations algorithm must capture all of
these T2 operations.

46

Implementation Topological operations

t1 ¢ o0
to < 00
while ¢; > 0 or t; > 0 do
t1<—0
tg(*o

for each c in cells do
if T2 is possible on ¢ do
per form_T2(c)
to < to+1
end
end

for each f in films do
if T'1 is possible on f
per form T1(f)
t1 < t1+1
end
end
end

for each j in junctions do
equilibrate(y)
end

Figure 4.6: An improved but still not sufficient algorithm for performing topological
operations in sequence.

iff any topological operations where performed. Only when no more topological
operations can be performed are the junctions equilibrated. It is also ensures
that no cell is tested for T2 and no film is tested for T1 more than once in each
loop iteration.

There are, however, still problems with the updated algorithm: Each time a
T1 operation have been performed, it might make a T2 operation possible. Not
carrying out that T2 operation immediately might result in the T2 being “lost”
due to a subsequent T1 operation. Figure 4.7 illustrates how two T1 operations
can enable and then disable a T2 operation. There is no right or wrong in this
situation: We are trying to put a number of simultaneous and instantaneous
event into a sequence of discrete steps, so instead we must consider the problem
from a practical, computational view point. In doing so, I will argue that it is
better to perform as many T2 operations as possible because they acts as energy
sinks, drawing energy out of the system, leading to a more stable simulation. To
see why this is so, consider a foam with many tiny cells in a small area. Many T1
and T2 operations will be possible, but if we do not perform any T2 operations
there is no room for the foam to grow the cells, so the foam will fluctuate as
the same borders are flipped repeatedly in endless T1 cascades. Performing all
possible T2 operations will give the foam better room to rearrange the junctions
and thus leads to a more stable simulation. For this reason I will classify T2

47

Implementation Parallelizing the simulation

possible T2

Figure 4.7: Two T1 operations in a row. The first T1 operation makes a T2 operation
possible, but the second T'1 operation removes the possible T2 operation.

operations as more computationally attractive than T1.

These considerations leads to a robust but more complex algorithm: By
modifying the topological operations to return the new cells and films that are
the result of the operation (three films and three cells in case of a T2 operation
and two cells in case of a T1 operation,) we can enqueue these new films and
cells to be tested again. After each T1 operation, the two resulting cells are
tested for possible T2 operations which may again cause further T2 operations
and so on. All these are captured by the improved algorithm listed in Figure
4.8.

When examining the final algorithm it becomes clear that it is not feasible to
run topological operations in parallel. As each operation touches a neighborhood
of the computational mesh, performing several operations in parallel can lead to
race conditions and compromise the computational mesh. We therefore exclude
the topological operations from the parallel part of the implementation and
perform them exclusively in sequence on the CPU. While it is possibly that a
scheme could be designed that allowed the operations in parallel, the topological
operations appear to best suited for sequential consumption.

4.4 Parallelizing the simulation

The method presented in pseudo-code in Section 3.7 is, in essence, a Gauss-
Seidel method. Each junction is equilibrated in sequence and the result of each
equilibration is applied before the next junction is equilibrated. In this way,
we use the intermediate results in the following calculations. In theory this can
lead to a faster convergence, though this is of course not garanteed. However,
Gauss-Seidel methods can not easily be parallelized. We would therefore rather
use a Jacobi method, where the complete solution is calculated from previous
values and then replaces them. As a consequence, the first step in parallelizing
the Vertex Model was to determine what effect rewriting the Vertex Model
algorithm to a Jacobi form would have.

4.4.1 The Vertex Model in Jacobi form

Rewriting the quasi-static simulation algorithm to Jacobi form is, in essence, a
matter of identifying which parts of the algorithm can safely be run in paral-
lel. Computing f; and Vf; and solving V f;z = —f; can be done in parallel.
Applying the junction position changes from z can also be done in parallel, but
applying the pressure changes can not be trivially parallelized, since z is per

48

Implementation Parallelizing the simulation

queuery <~ 0
queuery < 0
for each c in cells do
per form_T2(c, queuers , queuers)
end
process_T2_queue(queuers)

queuery < 0
for each f in films do

per form _T1(f, queuers, queuers)
end

while not empty(queuer;) do

f < pop(queuer)

per form _T1(f, queuers, queuers)
end

for each j in junctions do
equilibrate(j)
end

Figure 4.8: The final algorithm for performing topological operations in sequence.
This algorithm captures all topological cascades. The algorithm uses three auxillary
functions which can be found in Figures 4.9, 4.10, and 4.11.

function per form T1(f, queuers, queuers)
{co,c1} < perform_T1(f)
push(queuers, co, ¢1)
process T2_queue(queuers)

end

Figure 4.9: Auxiliary function, see Figure 4.8.

function per form_T2(c, queuer, queuers)

{fo, f1, f2,co, 1, c2} < per form T2(c)
push(queuery, fo, f1, f2)
push(queuers, ¢y, 1, C2)

end

Figure 4.10: Auxiliary function, see Figure 4.8.

49

Implementation Parallelizing the simulation

function process_T2_queue(queuers)
while not empty(queuers) do
¢ + pop(queuers)
per form_T2(c, queuers , queuers)
end
end

Figure 4.11: Auxiliary function, see Figure 4.8.

junction and several junctions will write to the same cells. Looking beyond the
equilibration process, coarsening can update cell target areas in parallel and
two-sided cells can be moved in parallel. There is a slight chance that two
two-sided cells are next to each other, which will cause problems, but given
that two-sided cells are rare and quickly disappears, I have deemed that the
risk is acceptable when considering the performance gain. The topological pro-
cesses can not easily be run in parallel, but must be done in sequence since a
topological change affects an area around it and doing several in parallel can
compromise the computational mesh. Figure 4.12 lists an updated pseudo-code
showing the Vertex Model in a parallel-ready form. Note how each junctions
change vector is calculated in parallel and changes are only applied afterwards
in a non-parallel loop to avoid problems with the cell pressure update.

4.4.2 Verifying the Jacobi algorithm

Before committing to the parallel version of the Vertex Model algorithm, I tested
what effect it would have on stability and convergence rate of the simulation.
Note that the following measurements where made with an early version of the
implementation. Some parts, such as the Energy Decay Constraint, was not
implemented at that point. As such, the stability presented in this verification
is not indicative of the complete algorithm. Both methods runs strictly in
sequence on the CPU.

To compare the convergence rate of the Jacobi form compared to the Gauss-
Seidel form, 1,000 foams, each with close to 2,000 cells initially, was constructed
and the equilibration algorithm was run until each foam was fully equilibrated.
Figure 4.4.2 shows various statistics comparing the two algorithms.

The most obvious result is that slightly more than twice the number of
simulations was divergent with the Jacobi method (3.2% compared to 1.4%),
which matches our expectation that the Jacobi method will be less robust than
the Gauss-Seidel method. However, the number of divergent simulations is still
low enough that I can conclude that the Jacobi form is viable.

It is interesting to note that both maximum and mean iterations of the
Jacobi method is lower than the Gauss-Seidel. This is surprising, as we would
expect the Gauss-Seidel method, which uses earlier results already in the same
iteration, to converge faster.

Figure 4.14 show number of iterations plotted against time for the two meth-
ods. They both show a perfectly linear correlation, which confirmes the linearity
of the algorithm.

50

Implementation Parallelizing the simulation

parallel for each c in Cells do
AT « dif fusion(c, At)
end

parallel for each c in Cells do
if valency(c) = 2 then
move(c) // See 3.6.1
end

// Perform topological operations, see 4.3

parallel for each j in Junctions do
fj + calculate_constraints(j)
V fj < calculate_jacobian(j)
R[j] <= solve(V f;,—f;)

end

for each j in Junctions do
Ebefore < calculate_energy(j)
// Update junction position from R[j], see 3.1.3
E.tier < calculate_energy(j)
if Fhefore > Eatter then

// Revert to old junction position
end

Plj.cell0] < P[j.cell0] + R[j].pressure0

Plj.celll] < Plj.celll] + R[j].pressurel

PJj.cell2] <— P[j.cell2] + R[j].pressure2
end

parallel for each c in Cells do
// Update cell pressures from P|c], see 3.1.3
end

Figure 4.12: The Vertex Model quasi-static simulation algorithm in parallel form.

o1

Implementation Parallelizing the simulation

\ Gauss-Seidel \ Jacobi ‘

Maximum iterations 88 85
Minimum iterations 8 12
Mean iterations 26.9077 23.1105
Maximum time 70.7393 67.3858
Minimum time 6.4417 9.3651
Mean time 20.5661 18.0340
Simulations 1000 1000
Divergent 14 (1.4%) | 32 (3.2%)

Figure 4.13: Comparison of a Gauss-Seidel and a Jacobi method. Iterations is the
number of times the equilibration algorithm was performed before the foam was fully
equilibrated, time is the elapsed wall-clock time in seconds of performing these itera-
tions. Simulations is the number of samples and divergent is the number of simulations
that did not converge inside a given iteration threshold of 256 iterations.

Gauss-Seidel Jacobian

Figure 4.14: Plot of iterations against time for (a) the Gauss-Seidel form and (b) the
Jacobi form. Note the strong linear correlation.

52

Implementation A CUDA implementation

From this analysis I conclude that the Jacobi version is at least as stable
and convergent as the Gauss-Seidel version.

4.5 A CUDA implementation

With powerful discrete Graphics Processing Units (GPU’s) becoming common,
both in consumer PC’s and in high-performance computing (HPC), NVIDIA’s
Compute Unified Device Architecture (CUDA) have become a good starting
point for creating a highly parallel foam simulation implementation. In the
following I will present a CUDA implementation'. The implementation is not
intended to be optimal but is meant as a proof-of-concept and as such has not
been optimized and some parts are not implemented in the most performant
manner.

4.5.1 A brief introduction to CUDA

In this section I will give a very brief introduction to the CUDA architecture. For
an in-depth introduction see [21]. A CUDA device is a highly parallel general-
purpose processor that, unlike the traditional consumer CPU, focuses on data
processing and have very little data caching and flow control. CUDA devices
are designed to process large amounts of data in parallel and can do so very fast,
as long as the same operation can be performed on all of the data. Branching,
on the other hand, is inefficient and should be avoided if at all possible. To get
maximum performance out of the device, the computation should be designed
to perform many arithmetic operations with minimal memory access, to hide a
large memory-access latency.

A CUDA program splits data up into a number of threads that all perform
the same operations. Threads are gathered together into blocks and blocks are
spread out amoung the available processor cores. Each thread has a private
memory, all threads in a block has access to a common shared memory and
all blocks have access to global memory. Shared memory have on the order of
10 to 100 times faster access time than global memory and works as a manual
cache for the global memory?, however the amount of shared memory is severely
limited.

In Vertex Model relaxation process, the arithmetically heavy operations of
calculating f; and Vf; are well suited to the CUDA architecture in that we
perform the same calculation for all junctions. Unfortunately, as part of these
calculations we need to access the three incident cells which can be of arbitrary
valency. This complicates memory management and use of shared memory. The
implementation used here is the most naive possible and shared memory is not
used at all. However, as I will demonstrate in Section 6.3, the implementation
is bottlenecked by the remaining sequential parts of the algorithm and so we
can not expect a large performance gain from better memory utilization.

1The full source code is subject to publication and can be obtained by contacting this
author.
2The Fermi CUDA architecure introduced an automatic cache.

53

Implementation A CUDA implementation

struct o { struct o { struct o2 {
real pressure int twin real z
real target_area int o real y
int valency int o2 int o}
int o2 bool mask int o}
bool mask } int o}

} bool mask

Figure 4.15: The structures defining the computational mesh. The structures are
loosely based on a half-edge mesh, where each o' is directed and has a twin going
the opposite direction. The types represents floating point (real), integer (int), and
boolean (bool) values. Integers are also used as indices.

4.5.2 Computational mesh representation

At the base of simulation is the computational mesh. It holds all the necessary
data used by the simulation and its topology determines the shape of the sim-
ulated foam sample. I will adopt the terminology of simplical complexes and
refer to vertices in the computational mesh as ¢°, edges as o', and faces as
o2. As the computational mesh is the dual of the foam, ¢° corresponds to cells
and holds the cells pressure and target area. Optionally we can also store the
cells valency so we can avoid traversing the cell when the valency is needed. o'
corresponds to films. In a dry foam, films have no intrinsic physical values, so
o! are only used to maintain connectivity. It would be possible to store the arc
radius with o!’s, but in practical use it is more convenient to calculate the arc
radius when needed. o? corresponds to junctions and stores the embedded coor-
dinates of the junction. Figure 4.15 summarises the computational mesh. The
connectivity of the computational mesh is part of the structures. Each % has a
representative o2 which can be used as starting point when traversing the films
enclosing the ¢°. o'’s, the glue that holds the computational mesh together,
are directed edges®, terminating in a junction (¢02), that points to a cell (o°).
Each ¢! has a twin ¢! which is the reversed film, pointing to the opposite o2.
Finally, o2 points to the three o! circling the junction. Note how this hardcodes
the computational mesh to not violate the three-films-to-a-junction invariant.

Each o also has a mask field. If we analyse the Vertex Model algorithm we
will quickly realise that cells can only disappear; after the initial mesh has been
created the number of cells (and thus films and junctions) will never increase.
We can use this fact to streamline the memory allocation of the implementation.
All necessary data can be allocated at the start of the simulation and, as T2
operations causes cells to disappear, the mask field is used to mask out o that
are no longer valid. In this way we can minimize costely memory operations.

The world cell, which must be handled seperatly in many aspects of the
simulation, is included as a standard ¢, but the index of this oV is stored so
that it can be filtered out when necessary.

3Similar to directed edges in a half-edge data structure.

54

Implementation A CUDA implementation

4.5.3 Initializing the simulation

The first task we are faced with in the simulation is how to generate the initial
foam. The dual computational mesh makes this task easier, as any triangulated
mesh can be turned into a foam with just a few changes. In the presented
implementation, a simple jittered grid was used as an initial point cloud: A
vertex was placed in a random position in each cell of a 2D grid and a Delaunay
triangulation was then used to create a mesh from this point cloud. However,
in contrast to most common uses for a triangulated mesh, we will need the
positions stored not in the vertices but inside the triangles. I therefore, as the
computational mesh is constructed, compute the barycenter of each triangle and
store that in the o2’s. For each ¢©, the initial pressure is set to 1 and the target
area to the area of the cell.

There is another step that, dependent on the mesh and the intended usage,
may be necessary: We need to connect the mesh to the world cell. All cells that
should lie on the boundary of the foam sample when initiating the simulation
must be connected to a single ¢° in the computational mesh and this ¢ is then
designated the world cell [24].

I have used the method described in [24] to connect all boundary cells with
the world cell by adding “fins” to the computational mesh before the world
cell is assigned. A single triangle (a fin) is appended to all triangles that have
a boundary edge in the computational mesh. The tip of these fins are then
replaced with a single vertex, the world cell. Figure 4.16 shows the steps from
initial triangulated mesh to computational mesh, with fins added to connect the
boundary to the world cell, to foam sample. The position of the new vertex in
the fin can be computed as

—_—
% o Xg + X1 X1 — Xp
free — 2 ||X1 — XO”)

where X, are the two end points of the boundary edge, as illustrated in
Figurg&\l?, and s € RT is a scalar controlling the size of the fin. Here
X = {z,y} = {—y,z}. Note that fins are added to the computational mesh
before the barycenter is computed.

We now have our initial computational mesh in an unstable state. We will
need to make an initial equilibration before we can use the foam. Figure 4.18
shows a foam sample before and after the initial equilibration.

Before we start the simulation there are several constants that we need to
consider. Figure 4.19 lists the relevant values. In the experiments and examples
shown in this thesis the values of these constants where chosen to insure stability
and convergence, not to match any real world material or medium. As such,
the values should be taken as no more than suggestions.

55

Implementation A CUDA implementation

Figure 4.16: The stages in converting an initial mesh to a computational foam mesh.
From left to right, top to bottom: The initial mesh, the initial mesh with fins added,
the dual mesh, the foam after initial equilibration. Note that the initial mesh has not
been updated to reflect the initial equilibration. This image is a reproduction of an
image in [24].

Xfree
P P boundary edge
— .= f(-.j
/ X Xof T
X

Figure 4.17: A boundary triangle in the computational mesh.

56

Implementation A CUDA implementation

(a) (b)

Figure 4.18: (a) The initial, unequilibrated foam. (b) The same foam, after it has
been equilibrated.

’ Constant \ Description Reference Value
~ Surface tension 2.2 0.25%
K Film permiability for gas diffu- 2.4 CI;IQ
sion
T V f; calculation damping 4.2 0.1
h Finite difference step size 3.1.1 0.01
Oerror Error threshold in the adaptive 4.1 1
V f; calculation.
iterations | The maximum number of itera- 4.2 256
tions of the quasi-static simula-
tion
OAp The quasi-static simulation 4.2 0.001%
minimum pressure change
OAx The quasi-static simulation 4.2 0.00lcm
minimum position change
o1 T1 distance threshold 3.2.2 0.025cm
Sr9 T2 area threshold 3.2.2 0.05cm?
At Time step size 3.7 255
Oscale The minimum scale factor in | 4.1 & 4.2 10-°
backtracking line searches

Figure 4.19: A summary of the constants used in the quasi-static simulation. The
Reference column gives references to the sections in this thesis that explains the usage
of these constants. The Value column are suggested values used in the experiments
shown in this thesis. Note that they are chosen to give the desired result, not to match
any real-world material properties.

57

Chapter 5

Rendering of Foam Films

When it comes to generating images of foams, most implementations focusing
on the physics of foams have been limited to two-tone line drawings. In the
following I will demonstrate a method for drawing foams that, while still a line
drawing, provides higher flexibility than simple line drawing, by utilizing the
current generation of programmable Graphics Processing Units (GPU’s.)

The output of the simulator is a collection of edges, each with a start and
an end point and an arc radius. Given these, our problem is to render an arc
for each edge, a task perfectly suited for the Geometry Shader (GS) found on
modern GPU’s.

Consider an edge with end points xg and x; and arc radius r > @ (vefer
back to Section 3.3 for an explanation of this constraint). For convenience we
shall only consider edges with positive arc radius; this is reasonable, since the
sign of the radius of a film can be reversed if we also swap the end points.
We now wish to draw the edge as an arc with radius r. To achieve this we will
subdivide the edge into a number of discrete line segments. Let x5 be the center
point in a circle with radius r such that points xo and x; lie on the boundary
of the circle. xg and x; must then be equidistant from x; and Axpx1xs is an
isosceles triangle with two sides of length r and one of length d = ||x; — xg|| as
illustrated in Figure 5.1. The angle between the two line segments meeting at
X2 18

d
9:2$n1<m>. (5.0.1)

In practical terms, equation (5.0.1) is problematic: As r — oo, r >> d so we lose
precision in the IEEE-754 single precision floating point representation used by
the GPU [20]. Instead we would prefer the numerator and denominator of the
fraction to be of the same order of magnitude, which we can achieve by replacing

(5.0.1) with
h
9—2ms1(>, (5.0.2)
T
where h = || X% — x, | is the distance of x5 from the midpoint of the straight

edge from x(to x;. Because h is on the same order of magnitude as r we will
get a better precision.

58

Rendering of Foam Films

Figure 5.1: Sampling an arc for rendering. By rotating a vector from x2 to x1 by t6
degree we find a point on the arc with radius 7.

We can now find any point on the arc between xy and x; by rotating a vector
X1 — X9 by an angle 0 < t0 < 0:

Xnew = X2 + R (1) (x1 — x2)7 , (5.0.3)
where 0 < t <1 controls how far along the arc we go and

| cos¢ —sing
R(¢) = { sin ¢ cos ¢]

is the normal 2D rotation matrix. By calculating X,e, for different values of ¢
we get a set of discrete points which we can connect to get a piecewise approx-
imation to the arc. (Note the similarity to the method used to move two-sided
cells.)

Now that we can create a piecewise approximation of the arc we are ready
to construct an algorithm for rendering the arcs. The goal is to construct a
ribbon of triangles, smoothly approximating the arc. The triangles should form
quadrilaterals, rectangles formed by joining two triangles (quads). We can create
a single quad by sampling the arc in two places:

Xfrew = X2 + R () (x1 — x2)" (5.0.4)
Xboyw = X2 + R((t+ 6)0) (x1 —x2)" (5.0.5)
where 0 < t < t + §t < 1. The smaller we choose dt to be, the less an area of
arc the quad will cover and thus we need more quads to fully cover the arc but

we get a better approximation of the arcs curve. To construct the four corners
of the quad we find two unit vectors

a

X — X9
vo = mew 72 5.0.6
Ten — 2]l (5.06)
Wb = Kiew ~ X2 (5.0.7)
||X(rllcw - X2||

59

Rendering of Foam Films A GPU arc render

which we use to create points under and over the arc:

Xquad = Xpew — %Vacwidth ; (5.0.8)
Xguad = Xnew + %Vacwidth ; (5.0.9)
Xauad = Xpow — %Vbcwidth) (5.0.10)
Xguad = Xnew T %Vbcwidth) (5.0.11)

where cyigih € RT is a user supplied constant used to control the width of the
quad and thus the width of the arc.

When a ribbon of quads have been formed we can create different rendering
effects as they are rendered. The simplest, and the method used in the figures
in this thesis, is to calculate texture coordinates that stretch over the ribbon. A
texture can then be applied to create the desired effect. Another option would
be to generate colors in the Pixel Shader based on some criteria. For example,
Beerentzen et al. demonstrated in [4] how a distance map can be used to create
smooth, supersampled lines by calculating a distance field over the rendered
N-gons. Their method would be very well suited for this application, as the
required information is already present in the Geometry Shader.

5.1 A GPU arc render

In the previous section we found a way of calculating the corners of quads to
approximate an arc. So how do we go about generating and rendering these
quads? The answer depends, of course, on the chosen rendering API, but in
my case the goal was a method that works with modern GPU’s. This makes
the Geometry Shader (GS) a perfect choice. The GS comes between the Vertex
Shader (VS) and Pixel/Fragment Shader (PS) and takes as input from the VS a
single primitive (point, line, or triangle), optionally with adjacency information.
The output is a set of new primitives which are then passed on to the PS. The
strength for our purpose is that we can send a single primitive per film and have
the GS generate the arc quads.

Some thoughts must be made on how to send data from the simulation to
the GS. A set of line primitives is the natural first choice, but we also need the
radius of the arc. We could store the radius in the vertices, but then we must
duplicate the radius information on the two vertices in a line primitive and we
can not reuse vertices between adjacent films. Another option would be to store
the radii in a buffer on the GPU and do a look up in the GS based on a primitive
ID. However, this would require that we transfer two blocks of data to the GPU
instead of one, which would be slower. Instead I have chosen a different approach
and constructs a triangle primitive for each edge, where the third point is xs
from the previous section. This way we only need to transfer once to the GPU,
there are no redundant information, and the calculations in the GS becomes
slightely simpler as we don’t need to calculate x5 in the GS. The radius can
then be calculated simply as the euclidian distance of x5 from one of the other
two vertices. I shall explain later how to obtain the x5 point. This approach
is ideally suited to the concept of index/vertex buffers which is the prefered

60

Rendering of Foam Films A GPU arc render

method for presenting primitives to the GPU. In this approach, a vertex buffer
(Vertex Buffer Object in OpenGL, Vertex Buffer in Direct3D) is allocated for
vertex data and another for index data (Index Buffer in Direct3D), where the
index buffer holds indices used to construct a primitive from the vertex buffer
data. This allows the GPU to process primitives fast and efficiently.

5.1.1 Image space rendering

Before presenting an implementation we must consider which coordinate system
we are working in. So far in this thesis we have implicitly assumed that all
coordinates and calculations are in the same global coordinate system, where
origo is the center of the plane on which the foam is simulated. We shall adopt
a common convention and call this the world space coordinate system or simply
world space (in OpenGL the term model space is commonly used.) This is a
natural and obvious choice for simulation, but it has some subtle consequences
for our arc render: If we calculate v®? and define cyiqen in world space, then
the width of the arcs, when rendered, will depend on the foams distance to the
camera. If the camera is close to the foam the arcs will be broad, but as the
camera moves away they will dwindle away until they can no longer be seen.
While this may be the desired behaviour in some applications, here we wish
for the arcs to remain visible and have the same width no matter the camera
position, so that we can inspect any detail of the foam and get the same visual
result.

Before I present a solution to this problem, let us briefly review the process
of transforming from 3D world space coordinates to 2D screen space, ready for
display on a computer screen. In the following I shall in most aspects adopt
the terminology used by Microsoft Direct3D [16], but the terms and concepts
are, in general, agnostic to the specific graphics application programming inter-
face (API) used. So far we have been working in {z,y} € R? 2D coordinates
through-out, but to utilize the GPU we must work with {z,y, 2} € R* 3D co-
ordinates. In 3D we can represent affine transformations, such as translation,
scaling, rotation, and shearing, as 4 x 4 matrices. To apply such a transfor-
mation to an R? coordinate we must extend the vector to R*, which we do by
working in homogeneous coodinates {z,y,z,w} € R* [9]. When a primitive is
rendered by the GPU it goes through five steps [9, 16]:

1. The coordinates are extended with a fourth ordinate: x = {x* x¥,x*, 1}
to form homogeneous coordinates.

2. The coordinates are transformed from model space (or object space) into
world space via the matrix T"°''d, This step transforms the model being
rendered from its local coordinate system to the global world coordinate
system. In our foam rendering the foam is already in world space and so
TVorld — T, the 4 x 4 identity matrix.

3. The coordinates are transformed from world space to view space (or cam-
era space) via TV'®¥, This transforms the coordinates into the space de-
fined by the virtual camera through which we observe the scene.

4. The coordinates are transformed from view space to the canonical view
volume via TProjection Thig transformation projects the coordinates unto

61

Rendering of Foam Films A GPU arc render

the view plane, which is the image that is displayed on the computer screen
(hence projection transformation).

5. Coordinates are projected back into 3D as {£,£ 2} € R3. The coor-

dinates are now in image space and the z-ordinate is the distance of the
point from the projection plane.

The last step in this process is crucial to the problem of rendering lines with
equal weight under all projections. In image space all distances are final, so by
generating homogeneous coordinates with w = 1, the z and y ordinates remain
unchanged and we can control the final size of rendered elements.

However, we can not simply do all calculations in image space: When the
projection is applied, the aspect ratio of the rendered image is also applied. As
a consequence, the distance between the three vertices of the triangle depends
on their angle in relation to each other, with the result that we do not get the
correct radius when calculating the euclidian distance between the vertices. The
answer is to do all calculations up to Xpew in world space, then transform ey
into image space and carry on from there. We will still get a slight distortion of
the final image because of aspect ratio, namely the width of the rendered lines
will be slightly larger than the height. If desired we could avoid this by dividing
the width by the aspect ratio, but I have found the slight distortion acceptable.

5.1.2 The Geometry Shader

We now have all the necessary pieces to create a GS program to render arcs.
Figure 5.2 lists the Geometry Shader algorithm in pseudo-code, while Appendix
B.2 lists the full code. Figure 5.5 shows a single edge rendered with the presented
method and Figure 5.6 shows a section of a foam with the films rendered with
the method. The program is a straight-forward implementation of the theory
presented in this and the previous sections. First 6 is calculated using Equation
(5.0.2), then the number of segments (quads) is calculated. Notice that siength
(segment_size in the code,) the length of a quad, is calculated in image space to
ensure that quads always have the same length. Finally the quads are generated
in the gs_arc_edge (GS_ArcEdge) helper function listed in figure 5.4. Using the
Geometry Shaders ability to output triangle strips, we only generate two vertices
per quad plus two vertices to start the strip. For each vertex pair (over and under
the arc,) Xpew is calculated using equation (5.0.4) and the point is transformed
into image space before the final positions are calculated using Equations (5.0.8)-
(5.0.11). By setting w = 1 in the final positions, we ensure that the points are
in image space. Note that we calculate points “backwards” from x; to Xq.
Therefore we must also remember to reverse to texture coordinates.

In the presented GS it is necessary and important to recognize what happens
when r — oo. The ratio % — 1, which presents us with a similar precision
problem as when calculating 6. The result is that # is not calculated sufficiently
precise for very large r values, when the edge is close to straight in other words,
and therefore the edge starts to over- or undershoot the end points which leads
to very noticable rendering artifacts. The simple solution is to detect that % is
close to one and render a single straight quad instead. In the simulation, the
special value of “+INF” (Positive Infinity) is used to signify a perfectly straight
edge. When we divide by r = +INF the result is the special value “NaN” (Not a
Number). We can detect this value and again render a single straight quad.

62

Rendering of Foam Films A GPU arc render

function gs(IN[3])

// Calculate position in image space
1 ¢ Dbenton
Xz ¢ TNE pss

Vnormal < IN[1].world — IN[2].world
radius < || Vpormall|
Xm < 0.5 (IN[0].world + IN[1].world)
h <+ ||Xy — IN[2].world||
ratio < ———
if is_ZNaN(h) or ratio > derror then
gs_straight_edge (xg, X1)
else
gs-arc_edge (IN, Xq, X1, X2, ratio, Vnormal)
end
end

Figure 5.2: The arc render Geometry Shader in pseudo-code. A listing of the actual
code can be found in Appendix B.2. “IN” is function parameter from the Vertex
Shader which contains the position of the three vertices in a triangle primitive with
World Space position and post-projection space position. The function uses two aux-
illary functions which can be found in Figures 5.3 and 5.4. Jderror iS a constant used to
control how large the radius of the edge must be before we consider the edge straight.
A value of derror = 0.99998 (single precision floating point) have been used in the
example renderings in this thesis.

function gs_straight_edge(xo,x1)
V < X1 — Xp
Po < {Xo — 0.5V Sthickness; 1}
P1 < {Xo + 0.5V * Sthickness» 1}
P2 < {Xl — 0.5V - Sthicknesss 1}
P3 < {Xl + 0.5V * Sthickness» 1}

make_quad(po, P1, P2, P3)
end

Figure 5.3: Auxillary function used by the arc rendering Geometry Shader to straight
edges. Sthickness dictates the width of the arc ribbon.

63

Rendering of Foam Films A GPU arc render

function gs_arc_edge(IN,xq,X1, X2, 1atio, Vhormal)
6 + 2cos~!(ratio)

po < 0
p1 <0
segments < max (2, min (63, floor (”’:1167*;::’”)))
for ¢ <+ 0 to segments + 1 do
b e
gments .
Vrotated < {Cos(te)vﬁormal - Sln(te)vgormal7

Sin(ta)viormal + Cos(to)vgormal}
Xnew IN[2]’LUOTld + Vrotated
X8 < {chw; 1} . TIS
X8 %U:

Vv ¢ XIS=Xp
[lx1s —x2]

P2 < {XIS — 0.5V - Sthicknesss 1}
P3 < {XIS +0.5v - Sthickness 1}
if 4 > 0 then
make*qua’d(p(% P1, P2, p&)
end
Po < P2
P1 < P3
end
end

Figure 5.4: Auxillary function used by the arc rendering Geometry Shader to render
arcs. T' is a matrix that transforms World Space positions into image space. The
constant 63 used when computing segments is dictated by maximum number of output
vertices allowed by the GPU. s¢nickness dictates the width of the arc ribbon and siengtn
the length of individual quads in the ribbon.

Figure 5.5: An example of a single edge rendered as an arc, with the triangle used to
represent the edge.

64

Rendering of Foam Films Constructing edge triangles

Figure 5.6: An example of films in a foam rendered as arc ribbons.

5.2 Constructing edge triangles

The final missing piece from the arc rendering algorithm is how to construct the
triangles sent to the GS from edges represented as two end points, x¢ and X,
and a radius r. This is, however, quite simple: Let x,, = x”;ixl be the midpoint
of the straight line edge, and let e = x; — x(be a vector parallel to the straight
line edge in direction from x¢ to x1. Let further more h = H%” and k = Vr2 — h?
(we disregard negative k under our earlier assumption that r is positive.) Using

the fact that we are in a 2D plane, let | =€ = {e?,e¥} = {e¥, —e”} be a vector
perpendicular to e. We can now calculate

r

X2 :Xm+k)
11l

which gives us the third point in the triangle Axgx1Xs.

5.3 Examples

Figures 5.7 and 5.8 show a foam with arcs rendered with a “DIKU” texture
used as films. Figure 5.9 shows a more artistic line style, while figure 5.10 shows
how a wet foam can be approximated by decorating a dry foam [25]. Note how
the junctions in figure 5.10 does not join smoothly. This is a consequence of
rendering each arc in separation. Referring back to Figure 5.6 we see why this
is so: Where the ribbon of quads overlap a discontinuity is introduced. It is this
discontinuity that is visible on the wide junctions of Figure 5.10. The size and
visual impact of the discontinuity depends on the texture used and width of the
arc ribbon. Figure 5.11 shows an example of a foam rendered with OpenGL
line primitives, the method used in [13] by Kelager. Notice the highly aliased
films. In constrast the new method described here produces, depending on the
texture used, smooth anti-aliased films.

65

Rendering of Foam Films

es

Figure 5.7: Example of a foam with a “DIKU” texture used as films. Segment length

= 0.01, segment width = 0.05.

3
pS ¢

-
Q -‘c!‘

Figure 5.8: Example of a foam with a “DIKU” texture used as films. Segment length

= 0.01, segment width = 0.05.

66

Rendering of Foam Films Examples

Figure 5.9: Example of a foam arc rendering style. The insert shows the texture used.

Figure 5.10: Example of a foam arc rendering style. The insert shows the texture
used. Note the artifacts at junctions.

67

Rendering of Foam Films Examples

Figure 5.11: A foam rendered with the method used by Kelager. Notice the thin,
highly aliased films.

68

Chapter 6

Results

In the following I will present the results of simulations of foams of different
sizes, including essential statistics. The goal is to demonstrate that the cur-
rent implementation is at least as correct as what has been previously pub-
lished. All measurements have been made with the CUDA implementation
presented in Chapter 4. Video sequences showing foams can be found online at:
http://infinitemonkey.dk/foam.html.

6.1 Foam evolution

In the following I will present several experiments with the purpose of demon-
strating and verifying the behavior of the Vertex Model while a foam is subjected
to coarsening.

6.1.1 Lower extreme

In the lower extreme, three cells (not including the world cell) is the least number
of cells the simulation will support. A configuration of two two-sided cells can
exist, but the simulation will be unstable. Figure 6.1 shows a sequence of 40
cells coarsening and collapsing into a stable three-cell configuration. The final
arrangement of cells matches the expected shape, where the three cells of near-
equal pressure meet with a single central junction of 120° [23].

6.1.2 Development with the Energy Decay Constraint

To examine the evolution of a foam sample over a large time scale, I constructed
a foam with initially 20.906 cells using the jittered-grid method described earlier.
The foam was allowed to coarsen over a periode of 60.000 frames of At = %s,
equating to 33 minutes of simulated time, with the Energy Decay Constraint,
but not the Orientation Invariant Constraint. Figure 6.2 lists the constants
used. After 60.000 frames the foam was reduced to 413 cells. Figure 6.3 shows
a sequence of six frames from the simulation. Note the anomalies that develop
on the free boundary of the foam as it evolves. I shall return to and describe
these anomalies later.

Figure 6.4 shows the development in total number of cells. In this and follow-
ing figures, we differentiate between the foam measured with and without cells

69

Results Foam evolution

(e) ()

Figure 6.1: A foam sample with 40 cells are allowed to evolve over 1.000 frames until
it is stable with three cells left. With just three cells the Energy Decay Constraint
holds the foam rigid and unchanging.

v | 025X K e
T 0.1 h 0.01
Jerror 1 iterations 256
Sap | 0.001 25 Sax 0.00Lcm
o1 0.025¢m o2 0.05cm?
At %S 6scale 10_5

Figure 6.2: Constants used in the experiments. Refer to Figure 4.19 for descriptions
of the constants.

70

Results Foam evolution

Figure 6.3: 20.906 cells simulated evolving over 60.000 frames. Frame 1, 12.001,
24.001, 36.001, 48.001, and 60.001 are shown.

71

Results Foam evolution

nwifo boundary

Figure 6.4: Cell count. Note logarithmic scale.

that form the free boundary. Statistics without the boundary is the bulk of the
foam and is as close to real-world measurements on foams as we can come [22].
Trivially we expect the total number of cells to decrease monotonically, since
cells can not be created, only collapse, which is also what we observe. Right
after the foam has been created, it is highly disordered, with many small cells
close to the T2 limit. Therefore we observe that the number of cells decrease
rapidly inside the first 5.000 frames as the foam rearranges itself to a more
stable shape. After this initial periode the number of T2 operations decrease
and we get a super-linear development of the total number of cells. Note the
growing difference between cell count with and without boundary. We expect
the foam to become increasingly dominated by the boundary as the number of
cells decrease. The observed difference is bulk cells coming into contact with
the boundary and disappearing from the bulk measurement as boundary cells
collapse.

Based on statistics gathered from observations of real foam samples, we
expect the distribution of cell valency (number of films in a cell) to be roughly
Gaussian with peak at n = 6. This distribution is the basis of foam statistics,
as defined in Section 2.6. Figure 6.5 shows the development in cell distribution
over the course of the simulation. Focusing our attention first on the bulk foam
without boundary, we see approximately the expected distribution, though there
is a pronounced skew towards n = 5, especially in (c¢) and (d). Examining the
second moment pz of p(n) in Figure 6.6 (b) is more telling. After the initial 5.000
frames p(n) stabilizes with pg ~ 1.3 and increasing. Between frames 20.000
and 30.000 we see a sudden jump after which, though very noisy, us ~ 1.6.
This value is slightly above what we would expect from real-world experiments.
Stavans and Glazier [22] found a value of ps = 1.4. It is difficult to say where
this difference stems from, but it is possible that there is some influence from
the free boundary, as the boundary becomes more dominant in the foam as the
number of cells decrease. The experiments performed by Stavans and Glazier
used what amounts to a fixed boundary condition and, as foam is a space-

72

Results Foam evolution

filling structure [28] that will stretch to fill available space, their foam was less
free in it’s movements. Therefore it is conceivable that, even though they also
considered only the foam bulk, the different boundary conditions can cause a
change in the behavior of the foam and thus in the measured cell distribution.

The observed behavior of uy is in aggrement with the notion of a scaling
regime as hypothesised in [22], where after an initial chaotic rearrangment of
the foam, the foam reaches a stable state and is only affected by cell growth
due to diffusion. If this is indeed the case then it would seem that we reach
the scaling regime after approximately 23.000 frames or 13 minutes of simulated
time. Correlating back to Figure 6.4 we observe that there is indeed a slight
change in the rate of change of total number of cells close after frame 20.000
where the decrease becomes slightly more linear.

Turning our attention to the foam with boundary we see a slightly different
picture. We expect the average distribution of boundary cells to be closer to five
than six, since the boundary “removes” one junction from the boundary cells. In
other words, if we add another layer of cells to the foam, such that the boundary
cells become bulk cells, each cell will, on average, gain one junction and thus one
film. As a result we expect p(n) to be skewed towards five when including the
boundary, but most pronounced for smaller numbers of cells when the boundary
becomes dominating. Examining Figure 6.6 (b) we see that this is indeed the
case. Over the evolution of the foam, the difference between p(n) with and
without boundary grows, but p(n) with boundary is consistently larger than
p(n) without boundary for n < 5 and until (d) also for n < 6. As the boundary
becomes dominating we see that the discrepancy between p(n) with and without
boundary increases. Looking at the second moment in Figure 6.6 we see that at
first the two measurements are close but as the number of cells decreases and the
boundary becomes dominating, the discrepancy becomes pronounced. In Figure
6.6 (b) we see that ps ~ 2 towards the end of the sequence as the number of
four- and five-sided cells increase. It is important to note, though, that the
boundary-including measurements are unreliable as the anomalies mentioned
earlier will inevitably affect the statistics.

It is interesting to note that there are quite a large number of two-sided cells
in the foam. From frame ~36.000 and onwards there are in fact more two-sided
cells than there are cells with n > 10. This suggests that two-sided cells are an
important part of the simulation and that the decision to devote time to them
was not misplaced.

From 2.6 we recall that the Aboav-Weaire law

m(n) =6—a+ ba + 2
n

relates an n-sided cell to the average number of sides in neighboring cells. Sta-
vans and Glazier [22] showed an experimentally verified relation with a = 1 and
o = 1.4. Figure 6.7 shows the development in nm(n) during the simulation,
plotted against the idealised nm(n) = n (5 — 774) suggested by Stavans and
Glazier. Through-out the simulation we see a very close match between the
measured values and the ideal. In the first part of the sequence the measured
points are slightly below the ideal line, while later, when we enter the scaling
regime, the points are slightly above the line. This matches our earlier result
where we found ps =~ 1.6 where Stavans and Glazier found po ~ 1.4.

Let us now consider some of the computational aspects of the simulation.

73

Results Foam evolution

04 04
. LU LYl
[__pin) wio boundary _ [__pin) wio boundary
035 035
03, 03, I
025 025
02 02
015 015
01 01
005 005 IH ﬂ
| | = , - 1l
D 2 4 8 12 14 2] 8 1 14
(a) (b)
035 035 o
I I
] [__Ipin) wio boundary [__Ipin) wio boundary
03, 03,
025 025
02 02
015 015
o1 01
005 ﬂ 005 ﬂ
] | .ﬂ [| I =)
2 a 8 10 iz i 2 4 8 10 iz i
(c) (d)
035 035
p(n) n LYl
n [__pin) wio boundary [_pin) wio boundary
03, - 03,
025 025
02, 02,
015 015
01 01
005 ﬂ 005 ﬂ
e | I | I
2] 8 10 12 14 K 2] 8 10 12 14

(e) ()

Figure 6.5: The distribution p(n) of cells with relation to their valency at frame 1,
12.001, 24.001, 36.001, 48.001, and 60.001.

74

Results Foam evolution

Figure 6.6: p2 measured (a) with boundary and (b) without boundary per frame.
Each point shows min, max, and average value for the preceding 200 frames.

Figure 6.8 shows the number of quasi-static iterations per frame averaged over
200 frames. We see a sharp decline in number of iterations until we reach the
scaling regime, after which the rate levels out and becomes almost linear. This
matches our expectation that a large number of iterations are necessary in the
first, chaotic regime but as we enter the more stable scaling regime less iterations
are necessary. The number of iterations necessary fluxtuates considerable, as
can be seen from the relatively high standard deviation. This is mostely due
to frames with many T1 and T2 operations needing more iterations. Figures
6.9 and 6.10 shows total number of T1 and T2 operations respectively per 200
frames. T2 operations are especially interesting as we see a large number of
T2 operations in the early simulation, but a rapid decrease until T2 operations
becomes rare occurances in the scaling regime. The number of T1 operations
are less clear, but we can observe that the number of T1 operations seems to
fall until we enter the scaling regime after which we see a sharp increase in
T1 operations again. However, as we can see from the standard deviation, the
number of T1 operations fluctuates wildly between frames.

To examine how much work we are doing per cell, Figure 6.11 show how many
iterations per cell (IpC) was done. Here we see an increase in IpC until frame
35.000 after which the IpC seems to be roughly constant. The IpC is interesting
as it shows that, though we are doing vastly more iterations in the early frames
we are doing more work per cell in the later frames. This seems to suggest
that, although the scaling regime looks stable, the quasi-static simulation is
finding it harder to equilibrate the foam. This is not unreasonable, as even a
small change to a near-stable foam can cause a neighborhood to become less
stable. That neighborhood will then need to be relaxed again, as illustrated in
Figure 6.12. This is unfortunately a consequence of only equilibrating locally.
Another possible explanation is that we, in general, need more iterations to
equilibrate free boundary cells. As the number of bulk cell decreases and the
boundary becomes dominating, the necessity for performing more iterations on
the boundary becomes more pronounced.

Figure 6.13 shows the wall-clock time of the simulation. The reader should
not place to much importance on the actual values, as the implementation is not
optimized. Figure 6.14 shows the number of iterations per second (IpS). Here
we see a sharp increase in IpS until we enter the scaling regime, after which the

75

Results

Foam evolution

70

Fitted

nm(n)
*__nmin} wfo boundary

70

Fitted

nmin)
*_nm{n) wio boundary

70

Fitted

nm(n)
*_nmin) wio boundary

40,

40,

Fitted

i)
*_nm{n) wio boundary

70

40,

Fitted

nm(n)
*_nmin) wio boundary

Figure 6.7: The Aboav-Weaire relation m(n) = 6 — a + %4E#2 at frame 1, 12.001,
24.001, 36.001, 48.001, and 60.001. The dotted line is an ideal nm(n) with pue = 1.4
and a = 1.

76

Results Foam evolution

4 15
r
25
30 10
2
£y H
15 5
10
5 WWWWWW‘WVWM%WW
T 2 3 7 B g T 2 3 7 B ®
Fram x10 Fram x10
(a) (b)

Figure 6.8: Number of iterations per frame. (b) Standard deviation

12000

10000,

8000,

- = %0
6000
20
4000 I/WM’M
2000, ©
1 z B 7 5 5 1 2 B] 5 5
Fram 10 Fram 10
(a) (b)

Figure 6.9: Total number of T1 operations per frame. (b) Standard deviation

5
s
2000 4
a5
1500 3
1 o 25
1000)
15
500 1
05|
M A bt
1 2 B 4 5 g 1 2 B 4
Frame x10 Frame x10
(a) (b)

Figure 6.10: Total number of T2 operations per frame. (b) standard deviation

7

Results Foam evolution

251 q

Iterationsicell
3]
L

05 q

Frame &

Figure 6.11: The number of iterations per cell per frame.

Figure 6.12: A local relaxation of a junction causes a neighborhood to become slightly
less equilibrated.

78

Results Foam evolution

10° b

3 z
£ g0 \A\“«

:
MW% AT

1 2 3 4
Frame

"
MMWW\ w

5 6

1 2

Frame

(a) (b)

Figure 6.13: The wall-clock time in seconds per frame. Note the logarithmic scale.
(b) standard deviation.

35

lterationsitime

Figure 6.14: The number of iterations per second per frame.

increase becomes roughly linear. The IpS mimicks the number of iterations in
this. This shows that, even though we saw an increasing number of iterations
per cell, the decreasing total number of cells means that the time per frame does
not increase.

6.1.3 Development with the Orientation Invariant Con-
straint

In a further experiment, another foam with initially 20.140 cells was allowed to
coarsen over a periode of 50.000 frames of At = 3—108 after which there was 515
cells left. The same constants as in the previous experiment was used, but the
foam was influenced only by the Orientation Invariant Constraint. Figure 6.15
shows frames 1, 9.961, 19.921, 30.047, 40.007, and 49.967. The foam quickly
develops anomalies on the boundary and after frame 30.000 also in the bulk
of the foam. I will return to these anomalies later. Figure 6.16 shows the

79

Results Foam evolution

development in cell count. It seems the foam enters the scaling regime after
~25.000 frames.

Even with anomalies we see a reasonably Gaussian distribution of cells over
the sequence, as shown in figure 6.17. This is also reflected in the second mo-
ment, Figure 6.18, both with and without boundary. Though the second mo-
ment without boundary have some extreme outliers the general tendency is that
po lies between 1 and 2. The Aboav-Weaire relation, plotted against the ideal
nm(n) = n (5_—n74) in Figure 6.19, again shows a good relation between the
theory and the simulation.

This experiment clearly shows that the Orientation Invariant Constraint in
itself is not enough to keep the simulation from developing invalid junction
configurations. However, the statistics suggests, that as long as the anomalies
are influences a relatively limited area, as is the case here, the essential statistics
are not significantly affected.

6.1.4 Further experiments

In addition to the experiments just described, two other experiments was con-
ducted, one with a foam of 273 cells and one with a foam of 2.286 cells. Statistics
similar to those presented for the 20.906 cell foam can be found in Appendices
A1, A2 and A.3 respectively. Note that the same foam scale and constants
where used in all three experiments. Only the initial computational mesh was
changed. Specifically, they where constructed from Delaunay triangulations of
200 and 2.000 vertices.

Examining the 273-cell foam (Appendix A.1) we see a foam that is domi-
nated by the boundary from the start. There is a close to linear progression in
cell count, but the distribution of cells quickly move away from the expected
Gaussian distribution which is also clear from the second moment of p(n). It is
difficult to see whether there is a scaling regime in this small foam. From this
it must be concluded that from the view-point of creating a physically correct
simulation, the Vertex Model with free surface boundary is not a good choice for
small foam samples. The greater the influence of the boundary in relation to the
foam bulk, the further from the physical measurements we come. Performance-
wise, not surprisingly we need significantly fewer iterations per frame, which also
reflects in the wall-clock time per frame, which even drops below the resolution
of the timer used after approximately 1.000 frames. IpS is, even in this unopti-
mized implementation, on the order of 10° which makes real-time simulation of
small foams feasible.

The 2.286 cell foam shows better physical behavior. The simulation was run
both with the Energy Decay Constraint (EDC) (Appendix A.2) and with the
Orientation Invariant Constraint (OIC) (Appendix A.3). Looking first at the
sequence with EDC, we see the same behavior as the 20.000 cell foam when
examining the total cell count per frame, with a break at approximately frame
10.000 that suggests that we enter the scaling regime there. The foam have a
good disribution of cells, though the second moment py is highly unstable when
disregarding the boundary. The boundary shows a distribution centered closer
to five than six, which matches our expectation. These statistics are backed
up by the Aboav-Weaire relation which shows that the foam bulk is very close
to the ideal though-out the sequence. This clearly shows that the increased
number of cells over the 273 cell foam diminishes the negative effects from the

80

Results Foam evolution

Figure 6.15: 20.906 cells simulated evolving over 60.000 frames. Frames 1, 9.961,
19.921, 30.047, 40.007, and 49.967 are shown.

81

Results Foam equilibrium

nwifo boundary

Figure 6.16: Development in cell count in a foam developed with the Orientation
Invariant Constraint. Note logarithmic scale.

boundary. Over the sequence, the number of iterations per frame quickly drops,
while the IpC climbes steadily, further supporting that the free surface boundary
cells needs a larger number of iterations to be equilibrated. Note the short-lived
anomaly in the lower-right corner of frame 6.001. The simulation was, in this
sequence, able to recover and the anomaly completely disappeared.

With the OIC, we see similar statistics, but without any anomalies forming.
The second moment of p(n), both with and without bondary, is slightly more
stable which suggests that the Energy Decay Constraint have a hard impact on
the simulation.

6.2 Foam equilibrium

To investigate the equilibrium state of a foam, I created a foam sample of
2.272 cells and ran 1.000 frames without diffusion to ensure that the foam had
reached a wholly stable state. After the first frame there was 2.239 cells left
and this remained constant throughout the sequence. Figure 6.20 (a) shows
the foam sample, while (b) shows the cell distribution p(n). When disregarding
the boundary we get a perfect Gaussian distribution, while p(n) with boundary
has the expected skew towards the lower values. The second moment ps =~ 1.2
with and po ~ 1.1 without boundary, confirms this. The Aboav-Weaire relation
nm(n), shown in (c), is very close to, but slightly below, the ideal value, which
is not surprising, as the ideal us = 1.4 is for a foam in the scaling regime, which
this static sample never enters.

6.3 Implementation performance

I have intentionally not made any formal profiling to measure the performance
of the implementation. It is a proof-of-concept implementation and the focus of

82

Results Implementation performance

04 04
- Ll Ll
[__pin) wio boundary - [__pin) wio boundary

035 035

03, 03,
025 025

02 02
015 015

01 01
005 005 IH ﬂ

0 0o il [|
2 4 8 10 [£ 2 4 8 10 A E]

04 035,
I M I
_ pin) wio boundary - —pin) wio boundary
035 03
03
025,
025
02
02
0.15]
015
0.1
01
005 IH ﬂ 005 ﬂ
] [a0 1
2 4 8 10 12 14 2 4 8 10 12 14

p(n) n LYl
[__pin) wio boundary [__pin) wio boundary
03 035
03,
025
025
02,
02
015
015
01
01
005 ﬂ 005 ﬂ
[! 1.0 [l n I =
2 4 8 10 12 £ 2 4 8 10 12 £

Figure 6.17: The distribution p(n) of cells with relation to their valency at frames 1,
9.961, 19.921, 30.047, 40.007, and 49.967.

83

Results Discussion

Figure 6.18: p2 measured (a) with boundary and (b) without boundary per frame.
Each point shows min, max, and average value for the preceding 200 frames.

this thesis has been on the model and the correctness of the simulation. However,
in an informal test, 1.000 frames of the quasi-static simulation with coarsening
was run on two identical foams of ~ 2.000 cells, one with the Jacobi method
implemented to run purely sequential on the CPU and one with the CUDA
implementation. The CPU implementation took 6 hours and 23 minutes on an
Intel Core2 Quad 2.4 GHz CPU, while the CUDA version took 1 hour and 12
minutes on a NVidia Geforce GTS 250 attached to the same CPU. Even with
the naive CUDA implementation we see a five-fold speed up over the sequential
implementation.

In another experiment, a foam was allowed to coarsen over 300 frames. A
profiling showed that 92% of the run time on the CUDA device was spend in the
sequential junction update, 7.7% was spend calculating and solving the V f;z =
—f; systems and less than 0.3% was spend copying data between the CPU and
the CUDA device. Note that this only takes into account the GPU run time.
The topological operations, which are run sequentially on the CPU, are not
included. In the future, some time should be dedicated to creating an optimized
implementation. We can however with reasonably certainty conclude that the
current implementation is bound by the non-parallel parts and in particular by
the topological processes.

6.4 Discussion

The aspect of the simulation that is most stricking is undoubtedly that the
simulation is not unconditionally stable and that anomalies are formed. The
anomalies are caused by the simulator being unable to correctly equilibrate a
junction (neighborhood) so instead of moving towards a an equilibrated state
the simulation moves towards a less equilibrated state. A similar behavior was
observed in previous implementations [13, 24]. Even though the simulation is
still not unconditionally stable, the implementation presented in this thesis is
markedly more stable than the previous implementations of the Vertex Model.
This claim is based in no small part on the fact that Kelagers implementation
could become unstable to such a degree that it became divergent. The presented
implementation has in numerous tests not once become divergent.

Of the two presented constraints, the Orientation Invariant Constraint (OIC)

84

Results Discussion
80 80
Fited
nm(n)
70HL_> i) wo boundary 70
60 60
50 50
40 40
30 30
2 2
4 Q 8 0 12) 4 6 8 0 2)
(a) (b)
80 80
Fitted Fitted
o) i)
701> nmin) wio boundary 70LL_» nmin) wio boundary
v
60 60
v
50 50
¥
¥
40 40
30 30
s
2 20
4 6 8 0 2 E] 4 6 8 0 2 E]
() (d)
80 80
Fited Fited
nmin) nmin)
70}L_>_nmin) wio boundary 70}L__>_nmin) wio boundary
60 60
50 50
40 40
30 30
2 20
4 Q 8 10 12) 4 Q 8 0 12 £

Figure 6.19: The Aboav-Weaire relation m(n) = 6 — a + 2t£2 at frame 1, 9.961,
19.921, 30.047, 40.007, and 49.967. The dotted line is an ideal nm(n) with p2 = 1.4

and a = 1.

85

Results Discussion

Figure 6.20: Statistics for a 2.239 cell foam in equilibrium. (a) The foam sample, (b)
cell valency distribution p(n), (b) Aboav-Weaire relation nm(n).

86

Results Discussion

is to weak to prevent all undesirable foam configurations, while the Energy
Decay Constraint (EDC) is to strong and limits the equilibration process. To
understand why the EDC fails, let us consider the definition of the constraint:
Junctions are only allowed to move in directions that keeps the energy constant,
or lowers the energy. We know from Section 2.5 that the point of minimum
energy is well-defined and inside the triangle spanned by the three incident
junctions. In the extreme, where the arc radius of the three films r — oo,
the energy is minimized when the turning angles between the three films are
all 120°. In other words, the EDC is a restatement of Plateau’s law, but we
have promoted it from a soft constraint of equal strength to the area constraint,
to a hard constraint of greater strength. This destroys the natural interplay
between the two constraints and the result is the anomalies we are observing:
The area constraint are trying to move the junction in one direction but the
EDC disallows that movement and the junction remains rigidly fixed. This also
explains why we only see obvious anomalies on the boundary: In the bulk of
the foam, junctions are close to equilibrium and generally inside the triangle
spanned by the three incident junctions. Therefore the movement constraint
interfere less with the junctions slight movements.

The OIC is more successful in fulfulling it’s role. It effectively stops inverted
junctions from forming, while still allowing movement of problem junctions.
However the OIC is not strong enough to prevent all invalid foam configurations:
It stops inverted junctions from forming, but it does not stop junctions from
making large jumps. Without the EDC, the foam is highly sensitive to the
initial mesh, as is evident from the 20.000 cell experiment where anomalies
where formed instantly if the EDC was not used.

While it is somewhat well-understood why anomalies can form when the
EDC is used, it is much less clear why anomalies forms when the EDC is not
used. The OIC in itself is unlikely to cause these anomalies, as its impact is
small: There was no indication of near-inverted junctions near the anomalies
formed in the bulk of the foam. One possible cause is the calculation of V f;
in the equilibration process: If Vf; is near-singular, the Vf;z = —f; system
becomes ill-conditioned and it is possible that this is what we are observing.

Disregarding the boundary, the simulation displays a good correlation to the
statistics measured from real foam samples by Stavans and Glazier. From this
we can conclude that the underlaying theoretical model is sound. It is harder to
be conclusive about the free surface boundary as we do not have measurements
on a real foam to compare against and as such our arguments must necessarily
be more subjective. But taking this and the anomalies into account we observe
the expected behavior from the free surface: The internal pressure in the foam
is greater than the surrounding environment, causing the free surface to be con-
vex. We also see a slightly lower number of films in boundary cells which is
also expected. However, we can observe that most anomalies forms on the free
boundary and from this we must conclude that the boundary is problematic.
The foam is highly sensitive on the boundary, suggesting that boundary junc-
tions are, in general, badly conditioned. This further suggests that the Vertex
Model, as it has been stated here, is not sufficiently robust to handle the free
boundary. From a simulation point of view it may be necessary to reintroduce
periodic boundaries if a completely stable simulation is required. This will also
partly remove the problems observed with the EDC, as it is better suited to the
conditions found in the bulk of the foam.

87

Results Discussion

The dual computational mesh is a definite success. Not only does it simplify
most aspects of the simulation, it also enables the addition of two-sided cells
to the model. The decoupling of topology and geometry in the computational
mesh gives us greater flexibility and allows for a more efficient data structure
when compared to the one used by Kelager.

The topological operations are, on the whole, a weak point in the Vertex
Model: As opposed to other parts of the model, the topological operations are
only loosely defined with no rigid underlying physical theory. While we have
a well-defined model for how the topological operations will change the com-
putational mesh, there is very little understanding of the implications inherent
to when and where they should be performed, not least when not to perform
topological changes. I have attempted to put focus on this issue, but we are still
far from a solid model. The operations are also difficult to parallelize, making
them a bottleneck in the execution.

88

Chapter 7

Conclusion

In this thesis I have presented a comprehensive explanation of the Vertex Model
and have demonstrated that it produces foams with statistics comparable to
measurements of real-world foams. While doing so I have introduced several
improvements and additions to the model, not least the dual computational
mesh.

As has been demonstrated, the Vertex Model is still not completely stable.
It is at this point unclear whether the problems are due to some minor detail
of the model, or if the model is fundamentally flawed. What is clear is that
currently some additional constraints are needed to keep simulations from be-
coming (locally) unstable. I have presented two such constraints, but have also
shown that one is too strong (the Energy Decay Constraint) while the other
is too weak (the Orientation Invariant Constraint). What is needed is a con-
straint that falls between these two in strength. Below I will briefly outline a
new method for relaxing foams which may prove helpful.

The parallel CUDA implementation presented here, while functional, is far
from optimized. This presents a practical problem of simulating large foam sam-
ples. Many parts of the implementation is still strictly sequential and making
more of these parts parallel will present interesting challenges in the future.

7.1 Future work

There are several aspects of the Vertex Model that are still open to improve-
ments. In the following I will discuss some of the larger issues.

7.1.1 Improved Newton root search problem

The two constraints discussed leads me to suggest a fundamental change to the
function being relaxed in the Newton root search. Let me first summarize what
we have learned about the relaxation process:

e The film turning angle calculation is insufficient and unstable.

e If a junction becomes inverted, the relaxation process can not in itself
bring the junction back into a un-inverted state.

e We do not wish for the surface energy of a junction to increase.

89

Conclusion Future work

e The surface energy of a junction is minimized when the film turning angles
are 120°.

This summary provides both the problem and the solution: If we can remove
the film turning angle from the relaxation process we no longer need the two
constraints. To see how this is possible, consider the root search problem in the
relaxation process:

r 0A; 0A; 9A; 9A; 94; A
Opi Op; Opx Oz dy AT — A,
6AJ E)A] BAJ 814] (‘)A] Ap’t ;L_ 1
op; Op; Opy, ox Oy Aj — Aj
Ay 9AL Ay 9A, 04, Ap; AT _ A
Opi Op; Opsk Oz 9y A - _ kT 4k
00, 96 09; 90, 99 Pk | = 2r _ g
op; op; Opy, Ox Oy A 3 g
o0, 00, o6, o0, 0, N In
op; Op; opi ox oy Ay 2)
801€ % E)Ok a@k aek 3 k

L Op; Op; Opk ox oy

As we can see, the last three rows of the Jacobian and the constraint vector
depends on the film turning angle, but as we have learned, the film turning
angle contraint is satisfied in the same location as the film surface energy is
minimized. We can therefore theoretically change the root search problem to

r 0A; 0A; 0A; 0A; 0A; A

Opi Op; Opk oz Oy AT — A,
0A; 0A; 9A; DA, OA; Api i g
Op; Opj Opr ox oy Aj — AJ
0Ay Ay Ay OAy 9A Ap; 7
op; Op; Opy Or Oy A _ | AR A
OE; O, 0E; 0B 0 Pro| = ET_E |
op; op; Opy ox oy 4 v
oE; OE; OE; OE; 0 ﬁx ET - E;
op; op; Opg ox Oy Y
0B, OE, OE, 0E, 0Ex Ep — Ey
L Op; Op; Opk ox dy

where FEj ;1 is the energy of film 4, j, and k respectively and E7;) are target
energies for the films.

The advantage of the updated system is that, instead of having the energy as
a hard constraint with the area as a soft constraint, both the energy and area are
soft constraints of equal importance. The updated system should also robustly
handle inverted junctions: Since the film surface energy, unlike with film turning
angle, is correctly calculated even for inverted junctions, the system should
correctly “unravel” inverted junctions. Lastely, because the system attempts to
minimize the film energy, and thus film length, large jumps in junction position
away from the energy minima are discouraged.

There are two problems with this new approach: The first problem is that
it is not clear what EiT,j,k should be. It could either be EiT,j,k = 0, which would
give us the global energy minimum, or it could be the minimum energy of the
junction calculated with straight edges, which would give us the local energy
minimum. We would need to conduct further tests to determine which of these
options give the best result. The second problem is that the system is over-
constrained. In the original system we can remove one row because we have
a direct relationship between the three angles. It is clear that similarly there
must be some relationship between the three film energies, but it is less clear
what this relationship is.

In the future I intend to investigate this updated root search problem and
determine whether it is a viable replacement and whether the proposed advan-
tages and stability is visible in actual simulations or not.

90

Conclusion Acknowledgement

7.1.2 Improved topological operations

The least physically founded part of the simulation is the topological operations.
While the current method mechanically fulfills the required purpose of rearrang-
ing the topology of the foam, the method should be investigated further. A
physical theory of the dynamics involved in the foam during the rearrangement
which is translated into topological changes could only improve the simulation.

7.1.3 Further improvements

The ultimate goal of any foam simulation is, of course, to move into three
dimensions. This presents several problems as films are transformed from lines
into surfaces, most of them centered around how to pose the Newton root search
problem and how to calculate the angles, areas, and volumes necessary. The
improved root search problem suggested in Section 7.1.1 can prove to be helpful
in this transition, as the surface energy is comparatively simpler to calculate
than the angle between surfaces.

Another important milestone in the further development of our foam simu-
lator is introducing true Plateau borders to create wet foam. This will add three
new radii to junctions as the thickness of the Plateau border must be taken into
account.

Going in another direction, adding external dynamics to the foam could
increase the visual impact of the simulation. Especially multiple interacting
foam samples, foam samples that can combine and split up, would be an large
improvement both in the applicability and presentation of the simulator. As it
is, the simulator, while technically proficient, lacks a certain “wow” factor for
the general public. Towards this goal, adding visual aspects of soap films, such
as light interference patterns would improve the marketability of the method.

7.2 Acknowledgement
I would like to thank my supervisor Kenny Erleben of the University of Copen-

hagen, Department of Computer Science, for his invaluable help in the writing
of this thesis.

91

Bibliography

[1]

2]

[10]

[11]

AsTE, T. Equilibrium and evolution of froths under topological constraints.
Philosophical Magazine Part B 71, 5 (1995), 967-979.

BARRALES MORA, L. A. 2d vertex modeling for the simulation of grain
growth and related phenomena. Math. Comput. Simul. 80, 7 (2010), 1411-
1427.

BRAKKE, K. A. The surface evolver. Ezxperimental Mathematics 1, 2
(1992), 141-165.

BARENTZEN, J. A., MUNK-LUND, S., GJoL, M., AND LARSEN, B. D.
Two methods for antialiased wireframe drawing with hidden line removal.
Proceedings of the Spring Conference in Computer Graphics (2008).

CLEARY, P. W., Pyo, S. H., PrAKASH, M., AND K00, B. K. Bubbling
and frothing liquids. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers
(New York, NY, USA, 2007), ACM, p. 97.

DesBrRUN, M., KANsO, E., AND ToNG, Y. Discrete differential forms
for computational modeling. In SIGGRAPH Asia '08: ACM SIGGRAPH
ASIA 2008 courses (New York, NY, USA, 2008), ACM, pp. 1-17.

ELcoTT, S., AND SCHRODER, P. Building your own dec at home. In
SIGGRAPH Asia 08: ACM SIGGRAPH ASIA 2008 courses (New York,
NY, USA, 2008), ACM, pp. 1-5.

ERLEBEN, K., SPORRING, J., HENRIKSEN, K., AND DoOHLMAN, K.
Physics-based Animation (Graphics Series). Charles River Media, Inc.,
Rockland, MA, USA, 2005.

FoLeY, J. D., vAN DawMm, A., FEINER, S. K., AND HuGHES, J. F. Com-
puter graphics: principles and practice, 2nd ed. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

FucHizakl, K., KusaBa, T., AND KAawAsaKI, K. Computer modeling of
three-dimensional cellular pattern growth. Philosophical Magazine B 71, 3
(1995), 333-357.

IcarT, 1., AND ARQUES, D. An approach to geometrical and optical
simulation of soap froth. Computers € Graphics 23 (1999), 405-418.

92

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[25]

[26]

KawasAKki, K., Nacal, T., AND NAKASHIMA, K. Vertex models for two-
dimensional grain growth. Philosophical Magazine Part B 60, 3 (1989),
399-421.

KELAGER, M. Vertex-based simulation of dry foam. Master’s thesis, De-
partment of Computer Science, University of Copenhagen, September 2009.

KUck, H., VOGELGSANG, C., AND GREINER, G. Simulation and render-
ing of liquid foams. In Proceedings of Graphics Interface (2002), pp. 81-88.

MARSH, S. P., MASUMURA, R. A., AND PANDE, C. S. A curvature-driven
vertex model for two-dimensional grain growth. Philosophical Magazine
Letters 72, 6 (1995), 429-434.

MICROSOFT CORPORATION. Windows DirectX Graphics Documentation,
June 2010.

MESSER, R. Linear Algebra: Gateway to Mathematics. HarperCollins
College Publishers, 1994.

NEUBERT, L., AND SCHRECKENBERG, M. Numerical simulation of two-
dimensional soap froth. Physica A 240 (1997), 491-502.

NOCEDAL, J., AND WRIGHT, S. J. Numerical Optimization, 2nd ed.
Springer, 2006.

NVIDIA. NVIDIA CUDA™ Programming Guide, 2.3 ed., January 2009.
NVIDIA. NVIDIA CUDA™C Programming Guide, 3.1 ed., May 2010.

STAVANS, J., AND GLAZIER, J. A. Soap froth revisited: Dynamic scaling
in the two-dimensional froth. Physical Review Letters 62, 11 (1989), 1318-
1321.

DURIKOVIC, R. Animation of soap bubble dynamics, cluster formation and
collision. Eurographics 20, 3 (2001).

VEDEL-LARSEN, B. K. Foam: Constructing the dual mesh. Tech. rep.,
Department of Computer Science at University of Copenhagen, January
2010.

WEAIRE, D., AND HUTZLER, S. The Physics of Foams. Oxford University
Press, 1999.

WEAIRE, D., AND KERMODE, J. P. Computer simulation of a two-
dimensional soap froth. Philosophical Magazine Part B 48, 3 (1983), 245—
259.

WEAIRE, D., AND KERMODE, J. P. Computer simulation of a two-
dimensional soap froth ii. Philosophical Magazine Part B 50, 3 (1984),
379-395.

WEAIRE, D., AND RIVIER, N. Soap, cells and statistics - random patterns
in two dimensions. Contemporary Physics 25, 1 (1984), 59-99.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[29] WEJCHERT, J., WEAIRE, D., AND KERMODE, J. P. Monte carlo sim-

ulation of the evolution of a two-dimensional soap froth. Philosophical
Magazine B 53, 1 (1986), 15-23.

[30] WEYGAND, D., BRECHET, Y., AND LEPINOUX, J. A vertex dynamics

simulation of grain growth in two dimensions. Philosophical Magazine B
78, 4 (1998), 329-352.

[31] WEYGAND, D., BRECHET, Y., LEPINOUX, J., AND GusT, W. Three-
dimensional grain growth: A vertex dynamics simulation. Philosophical
Magazine B 79, 5 (1999), 703-716.

[32] ZuENG, W., YONG, J.-H., AND PauL, J.-C. Simulation of bubbles. In
SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation (Aire-la-Ville, Switzerland, Switzerland,
2006), Eurographics Association, pp. 325-333.

94

Appendix A

Results

A.1 273 cell experiment - With Energy Decay
Constraint

Frames 1, 1.365, 2.707, 4.071, 5.413, and 6.777 from the simulation.

95

Results 273 cell experiment - With Energy Decay Constraint

Total number of cells per frame.

10° . . ‘ ‘ . ‘

n
nwio boundary

L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Frame

Cell valency distribution p(n) for frames 1, 1.365, 2.707, 4.071, 5.413, and 6.777.

04 05
[0]
[_Ipin) wio boundary 045 p(n) wio boundary
035
04
03
035
02 03
02 025
015 02
015
0.1
01
oo 005 I
0 0
2 3 4 5 7 8 9 10 " 1 2 3 4 5 6 7 8 9 10 "
05 035
LUl -

L)
[_Ip(n) wio boundary

045 [__pin) wio boundary
03
04
035 025
03
02
025
015
02
015 01
01
005
005
R | N |
0 L s ' 0 : ’} ! L

1 2 3 4 5 6 7 9 10 " 1 2 3 5 6 7 8 9 10 "
07 05
L L)
[C—Jpin) who boundary 045 [—Ipin) wio boundary
06
04
05 035
03
04
025
03
02
02 015
01
01
005
o3 2 3 4 5 6 7 8 9 0 1 1 2 3 4 6 7 8 9 0 11

Second moment of p(n) per frame without boundary.

96

Results 273 cell experiment - With Energy Decay Constraint

35r

L L I I L I |
0 1000 2000 3000 4000 5000 6000 7000

Frame

Second moment of p(n) per frame with boundary.

L L I | L I |
0 1000 2000 3000 4000 5000 6000 7000

Frame

Aboav-Weaire relation m(n) for frames 1, 1.365, 2.707, 4.071, 5.413, and 6.777.

Fited .
nmin)
nmn) wio
50 50
45 45
¥
40 40
35 K
30 30
. .
2 2
20 20
4 5 6 7 B 9 0 3 4 5 6 7 8 9 10

97

Results 273 cell experiment - With Energy Decay Constraint

60 60
Fitied . Filted
- nmin) - nmin)
~_nmin) wio boundary < _nmin) wio boundary
50 50
x
45 a5
40 0
35 35
B
30 30
*
2 2
s
20 20
3 4 5 3 7 5 9 70 3 4 5 3 7 8 9 10
" n
60 . 60
Fitted Filted
N nmin)
S5« nm(n) who boundary. % nm{n) wio boundary
50 50
45 a5
40 a0
35 35
30 30
2 2
2 2
3 4 5 3 T 8 9 10 7 3 4 5 6 7 8 9 10

9
25
8
7
201
6
E 5
.
10
3
2
5 WJM/‘AMMM
\A 1
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000

Total number of T1 operations and standard deviation.

0 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Frame Frame

Total number of T2 operations and standard deviation and standard deviation.

98

Results 273 cell experiment - With Energy Decay Constraint

1
14 09
08

12
07
10 06
] o5
5 04
03

a
i 02
2 01

K 1000 2000 3000 4000 5000 6000 7000 KT 2000 3000 4000 5000 6000 7000
Frame Frame

Number of iterations per cell per frame.

Iterations/cell
I~
T
L

L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Frame

Wall-clock time in seconds per frame and standard deviation.

09 04
08 035
07
03
06
= 5025
g 05 £
= =02
04
0.5
03
02 01
01 005
o 1000 2000 8000 4000 6000 6000 7000 ° 000 2000 @00 4000 5000 6000 7000
Frama Frame

Wall-clock time in seconds per iteration per frame.

99

Results 273 cell experiment - With Energy Decay Constraint

Iterations/tirme

L I I L I
2000 3000 4000 5000 6000 7000

Frame

100

Results 2.286 cell experiment - With Energy Decay Constraint

A.2 2.286 cell experiment - With Energy Decay
Constraint

Frames 1, 6.001, 12.001, 18.001, 24.001, and 30.001 from the simulation.

<IN o R
X a2
‘*,«.e.o’.-gv.hu

Total number of cells per frame.

101

Results 2.286 cell experiment - With Energy Decay Constraint

10 T T T T T T

n
n wifo boundary

05 1 15 2 25 3 35

Frame

Cell valency distribution p(n) for frames 1, 6.001, 12.001, 18.001, 24.001, and
30.001.

B - 0]
p(n) wio boundary [__pin) wio boundary
035
03 -
03
025
025
02
02
015
015
01
01
b H IH B IH
ml | [n] | al
2 4 8 10 12 2 4 8 10 12
035 04
I n [
—Jp(n) wio boundary —Tp(n) who boundary
03 n 035
03
025
025
02
02
015
0.15
01
01
005 I 005 H
[l 1 . I
2 4 5 8 0 12 2 4 6 8 10 2
05; 04
L0} L
M n [__1pin) wio boundary [__Ipin) wio boundary
03 035
n 03
025
025
02
02
015
015
01
01
005 005
2] 8 10 12 2 4 8 10 12

Second moment of p(n) per frame without boundary.

102

Results 2.286 cell experiment - With Energy Decay Constraint

07 I I 1 | 1 1 |
0 . :

Frame 4

e I I 1 | 1 1 |
0 . :

Aboav-Weaire relation m(n) for frames 1, 6.001, 12.001, 18.001, 24.001, and
30.001.

Fitted . Fited
nmn) 50 min)
*_nmin) wio boundary . nmin) wio boundary
55 55
50 50
45 45
40 40
35 35
30t 30
2 2%
20 20
2 3 4 5 6 7 B 9 10 11 2 3 4 5 6 7 B 9 10 11

103

Results 2.286 cell experiment - With Energy Decay Constraint

85 85

Fitted . Fited :
60 nmin) nmin)

«_nmin) wio boundary . *_nmin) wio boundary .
55 55
50 50
45 as
40 40
.
35 35
30 20
.

25 2
20 20

3 4 5 6 7 8 9 10 n" 3 4 5 6 7 8 9 10 "
65 65

Fitted . Fited
60 nm{n) nmin)

nm(n) wio boundary . nm(n) wio boundary
55 55
50 50
45 a8
40 a0
35 35
30 30
25 25
20 20

3 4 5 6 7 8 k) 10 " 3 4 5 3 7 8 9 10 1"

12

30 10
25
8
£
)
10
’ o, 2
05 1 15 2 25 3 35 05 1 15 2 25 3 35

Total number of T1 operations and standard deviation.

16
140 14
120 12
100 1
= 80 - 08
60 06
40 04
20 02]‘MM
et . Attt o
05 1 1 2 25 3 35 05 1 15 2 25 3 35
Frame x 10“ Frame X 104

Total number of T2 operations and standard deviation and standard deviation.

104

Results 2.286 cell experiment - With Energy Decay Constraint

. ot
2 AMM/WWMMW ‘) U Mﬂm

0. 15 2 25 3 35 05 1 15 2 25 3 35
Frame x10* Frame x10*
Number of iterations per cell per frame.
9 T T T T T T
8_ 4
7_ 4
8, 4
s]
3_ 4
2_ 4
,L i
a ‘ ‘
0 05 1 15 2 25 3 35
Frame " 104
Wall-clock time in seconds per frame and standard deviation.
7 4
5 35
5 3
25
,ﬂA .
£ H
15
? 1
1
05 M\Mj
- , i
05 1 15 2 25 3 35 05 1 15 2 25 3 35
Frame x10* Frame x10*

Wall-clock time in seconds per iteration per frame.

105

Results 2.286 cell experiment - With Energy Decay Constraint

10
45

35r A

Iterations/time
o
) il
T T
I L

w
T
L

05r A

Frame

106

Results 2.286 cell experiment - With Orientation Invariant Constraint

A.3 2.286 cell experiment - With Orientation
Invariant Constraint

Frames 1, 6.001, 12.001, 18.001, 24.001, and 30.001 from the simulation.

Total number of cells per frame.

107

N

Results .286 cell experiment - With Orientation Invariant Constraint

10 T T T T T T

n
n wifo boundary

05 1 15 2 25 3 35

Frame

Cell valency distribution p(n) for frames 1, 6.001, 12.001, 18.001, 24.001, and
30.001.

i - B 0]
p(n) wio boundary [__pin) wio boundary
035 035
03 03
025 025
02 02
015 015
01 01
005 H IH 005 IH H
al = I -
2 4 8 10 12 2 4 8 10 12
04 - 035
I [
—Jptn) who boundary M —Tp(n) who boundary
035 - 03
03
025
025
02
02
015
015
01
01
005 005 I
n 1w] 1
2] 8 10 12 2 4 8 10 2
045 A 05
L0} L
p{n) wio boundary 045 n [pin) wio boundary
04
035 04
035
03
03
025
025
02
02
015
015
01 04
I | ul nl al
2 4 8 10 12 2 4 8 10 12

Second moment of p(n) per frame without boundary.

108

Results 2.286 cell experiment - With Orientation Invariant Constraint

03

Frame 4

Second moment of p(n) per frame with boundary.

22r

e I I 1 | 1 1 |
0 . :

Aboav-Weaire relation m(n) for frames 1, 6.001, 12.001, 18.001, 24.001, and
30.001.

Fitted . Fited
nmn) 50 min)
*_nmin) wio boundary . nmin) wio boundary
55 55
50 50
45 45
40 40
35 35
30t 30
2 2%
20 20
2 3 4 5 6 7 B 9 10 11 2 3 4 5 6 7 B 9 10 11

109

Results 2.286 cell experiment - With Orientation Invariant Constraint

85 85

Fitted . Fitted. .
60 nmin) nmin)

«_nmin) wio boundary . *_amin) wio boundary .

55 55
50 50
45 as
40 0
35 35
30 30
25 2
20 20

3 4 5 6 7 8 9 10 n" 3 4 5 6 7 8 9 10 "

*__nmin) wio boundary . o *_nm{n) wio boundary .
55 55
50 50
45 a8 '
40 ’ a0 '
35 35
30 : 30 '
25 25 ’
20 ’ 20 '

3 4 5 6 7 8 k) 10 " 3 4 5 3 7 8 9 10 1"

Nerations:

2
05 1 15 2 25 3 3.

5 05 1 15 2 25 3 35
Frame

Frame it it

Total number of T1 operations and standard deviation.

25
140
2
120
100 15
80 T
60 !
40
05
2)
i ety A o
05 1 15 2 25 3 35 05 1 15 2 25 3 35

Frame Frame

x10* x10*

Total number of T2 operations and standard deviation and standard deviation.

110

Results 2.286 cell experiment - With Orientation Invariant Constraint

3
120 25
100
2
80
A ARk
60
1
40
20 \']“ 05
M, o , e ‘
05 1 15 2 25 3 35 05 1 15 2 25 3 35
s L
Number of iterations per cell per frame.
3 T T T T T T
7 L 4
6 L 4
5 L 4
3 L 4
2l i
1 L 4
a ‘ ‘
0 05 1 15 2 25 3 35
Frame " 104
Wall-clock time in seconds per frame and standard deviation
0 0.
04
02 035
03
015
= s 025
§ E 02
01
015
005 n ot ‘
005
o L m I an Lt ‘\.\L D o ol 1L
05 1 15 2 25 3 35 05 1 15 2 25 3 35
s L

Wall-clock time in seconds per iteration per frame.

111

N

Results .286 cell experiment - With Orientation Invariant Constraint

S
T
L

I
T
L

Iterations/time

Frame

112

Appendix B

Implementation Detalils

B.1 Gauss-Jordan Reduction

An example of an implementation of a Gauss-Jordan reduction. The input
matrix is assumed to be row-major. The implementation allows us to ignore a
row/column pair to accomodate for the world bubble.

X = b;

// Do a Gauss—Jordan reduction to solve the linear system
// 15 divisions , 47 multiplications

// Lower triangle

// Row 0
if (ignore_row != 0) {
x..0 =x..0 / a._00;
x.-1 =x..1 — x..0 %« a._10;
X.-2 =x.-2 — x..0 % a._20;
x..3 =x..3 —x..0 x a._30;
x.-4 =x..4 — x..0 x a._40;
a.-04 = a._04 / a.-00; a._-03 = a._03 / a._-00; a._02
= a._02 / a.-00; a._-01 = a._01 / a._00;
a._-14 = a._14 — a._04 % a._10; a._-13 = a._13 — a._.03 % a._10; a._12
=a._12 — a._.02 x a._.10; a._11 = a._11 — a._01 * a._10;
a.-24 = a..24 — a._.04 x a..20; a.-23 = a.-23 — a..03 x a._20; a._22
=a.-22 — a._.02 x a._.20; a.-21 = a.-21 — a._01 % a._20;
a.-34 = a.-34 — a._04 x a.-30; a.-33 = a.-33 — a._-03 *x a._30; a._32
=a._-32 — a._02 x a..30; a..31 = a._.31 — a._01 * a._30;
a.-44 = a._44 — a._04 *x a._40; a._43 = a._43 — a._.03 x a._40; a._42
=a.-42 — a._.02 x a._40; a._41 = a._41 — a._01 * a._40;
}
// Row 1
if (ignore_row != 1) {
x.-.1 =x._1 / a._-11;
X.-2 =x.-2 — x._-1 % a._21;
x..3 =x..3 —x._.1 % a._31;
x..4 =x..4 —x._.1 % a._41;
a._ 14 = a._14 / a.-11; a._13 = a._13 / a._-11; a._12
= a._12 / a.-11;
a._24 = a._24 — a._14 % a._21; a._.23 = a._23 — a._13 *x a._21; a._22
= a._22 — a._12 x a._21;
a.-34 = a..34 — a._14 x a..31; a..33 = a..33 — a._13 x a._31; a._32
=a.-32 — a._12 % a._31;
a.-44 = a._44 — a._14 % a._41; a._-43 = a._-43 — a._-13 * a._41; a._42
= a._42 — a._12 x a._41;
}
// Row 2

113

Implementation Details

Gauss-Jordan Reduction

if(ignore_row != 2
xX..2 = x..2
x..3 =x..3 — x
x..4 =x..4 — x
a.-24 = a._24
a.-34 = a._34 —
a._44 = a._44 —

}

// Row 3

if (ignore_row != 3
x..3 = x.-3
x.-4 =x..4 — x
a._34 = a._34
a._44 = a._44 —

}

// Row 4

if(ignore_row != 4
x..4 =x..4 / a

}

// Upper triangle

// Row 4

if(ignore_row !=
x..3 = x..3 —
X.-2 = x..2 —
x.-1 x.-1 —
x..0 = x..0 —

} else {

x..4 = 0.0f;

}

// Row 3

if(ignore_row != 3
X..2 =x..2 — x
x.-1 =x..1 — x
x..0 =x..0 — x

} else {

x.-3 = 0.0f;

}

// Row 2

if(ignore_row != 2
x.-1 =x..1 —
x..0 =x..0 —x

} else {

x..2 = 0.0f;

}

// Row 1

if(ignore_row I!= 1
x..0 =x..0 — x

} else {

x..1 = 0.0f;

}

// Row 0

if(ignore_.row == 0
x.-0 = 0.0f;

}

KoMoX X

)

/ a._22;

.22 % a._32;

-2 % a._42;
/ a.-22;
a._24 x a._32;
a._-24 x a._42;

/ a._-33;

.23 % a._43;
/ a._-33;

a._-34 % a._43;

)

{

.44

)

{

{

* ¥ ¥ ¥

.23 %
.23 %
23 x

)

{

.22 %

)

{

[SER I AN

_01;

a.-23
a._33
a._43

114

a.-23

/ a.-22;

a.-33 — a._23 *x a._32;
a._-43 — a._23 *x a._42;

Implementation Details Arc render Geometry Shader

B.2 Arc render Geometry Shader

Following is the full Geometry Shader used to construct the arc ribbon for
rendering.

cbuffer constants {
row-major matrix WorldViewProjection;
row_major matrix ViewProjection;
row_major matrix World;
float line_thickness;
float segment_size;

}

struct GS_Input {
float4 position : POSITION;
float3 world : TEXCOORDO;

};

struct GS_Output {
float4 position : SV_POSITION;
float2 uv : TEXCOORDO;

};

#include ”arc_straight_edge_gs.fx”
#include ”arc_edge_gs.fx”

[maxvertexcount (128)]
void GS_ImageSpace(triangle GS_Input IN[3], inout TriangleStream<
GS_Output > OUT) {
float3 x0 = IN[0]. position.xyz / IN[O]. position .w;
float3 x1 = IN[1]. position.xyz / IN[1]. position .w;
float3 x2 = IN[2]. position.xyz / IN[2]. position .w;

float2 normal = IN[1].world.xy — IN[2].world.xy; // In world
space

float radius = length(normal); // In world
space

float2 xm = 0.5f = (IN[O].world.xy + IN[1].world.xy);

float h = length(xm — IN[2].world.xy);

float ratio = h / radius;

if(isnan(h) || ratio > 0.99998f) {
GS_StraightEdge(x0, x1, OUT);

} else {
GS_ArcEdge(IN, x0, x1, x2, ratio, normal, OUT);
}

OUT. RestartStrip () ;

void GS_ArcEdge
(GS_Input IN[3]

, float3 x0

, float3 x1

, float3 x2

, float ratio

, float2 normal

, inout TriangleStream< GS_Output > OUT
)

float theta = 2.0f % acos(ratio);

// Max segment count is omne less than half the mazimum wverter count
int segments = max(2, min(63, (int)floor(length(x1 — x0) /
segment._size)));

GS_Output 00;
GS_Output ol;

// Generate two new wvertices on the triangle strip

for(int i = 0; i < segments + 1; ++i) {
float t = (float)i / (float)segments;

115

Implementation Details Arc render Geometry Shader

float s, c;
sincos(t * theta, s, c);

float2 rotated = float2(¢ % normal.x — s % normal.y, s % normal
.x + ¢ % normal.y);

float2 xnew = IN[2].world.xy + rotated;

float4 pos_-is = mul(float4 (xnew, IN[2].world.z, 1),

ViewProjection);
pos_is /= pos_is.w;

float3 normal_-is = normalize(pos_-is.xyz — x2);

00.position = float4(pos-is.xy — normal_is.xy / 2.0f x
line_thickness , pos_is.z, 1);
00.uv = float2(1.0f — t, 1);

ol.position = float4(pos_is.xy + normal_is.xy / 2.0f =x
line_thickness , pos_is.z, 1);
ol.uv = float2(1.0f — t, 0);

OUT. Append(00);
OUT. Append(ol);

void GS_StraightEdge
(float3 xO0
, float3 x1
inout TriangleStream< GS_Output > OUT

)

)
{

GS_Output o00;

GS_Output ol;

GS_Output o02;

GS_Output 03;

float2 normal = normalize(float2(xl1.y — x0.y, x0.x — x1l.x));

00.position = float4(x0.xy — normal / 2.0f % line_thickness, x0.z,
1)s

00.uv = float2(1, 1);

ol.position = float4(x0.xy + normal / 2.0f = line_thickness, x0.z,
1)

ol.uv = float2(1, 0);

02.position = float4(x1.xy — normal / 2.0f % line_thickness , x1l.z,
13

o2.uv = float2(0, 1);

03.position = float4(x1.xy 4+ normal / 2.0f % line_thickness , xl1.z,
1)s

03.uv = float2(0, 0);

OUT. Append(00);

OUT. Append(ol);

OUT. Append (02);

OUT. Append(03);

}

116

