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Model-based vision is firmly established as a robust approach
to recognizing and locating known rigid objects in the presence of
noise, clutter, and occlusion. It is more problematic to apply model-
based methods to images of objects whose appearance can vary,
though a number of approaches based on the use of flexible tem-
plates have been proposed. The problem with existing methods
is that they sacrifice model specificity in order to accommodate
variability, thereby compromising robustness during image inter-
pretation. We argue that a model should only be able to deform
in ways characteristic of the class of objects it represents. We
describe a method for building models by learning patterns of
variability from a training set of correctly annotated images. These
models can be used for image search in an iterative refinement
algorithm analogous to that employed by Active Contour Models
(Snakes). The key difference is that our Active Shape Models can
only deform to fit the data in ways consistent with the training
set. We show several practical examples where we have built such
models and used them to locate partially occluded objects in noisy,
cluttered images. © 1995 Academic Press, Inc.

1. INTRODUCTION

We address the problem of locating examples of known
objects in images. Image interpretation using rigid models
is well established (1, 2]. However, in many practical
situations objects of the same class are not identical and
rigid models are inappropriate. In medical applications,
for instance, the shape of organs can vary considerably
through time and between individuals. In addition, many
industrial applications involve assemblies with moving
parts, or components whose appearance can vary. In such
cases flexible models, or deformable templates, can be
used to allow for some degree of variability in the shape
of the imaged objects [3--23].

In this paper we present new methods of building and
using flexible models of image structures whose shape
can vary. The models are able to capture the natural
variability within a class of shapes and can be used in
image search to find examples of the structures that they
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represent. Previous approaches have allowed models to
deform, but have not tailored the variability to the class
of shapes concerned—the models are not specific. Our
main contribution is to describe how to create models
which allow for considerable variability but are still spe-
cific to the class of structures they represent.

Our technique relies upon each object or image struc-
ture being represented by a set of points. The points can
represent the boundary, internal features, or even exter-
nal ones, such as the center of a concave section of bound-
ary. Points are placed in the same way on each of a training
set of examples of the object. This is done manually,
though tools are available to aid the user. The sets of
points are aligned automatically to minimize the variance
in distance between equivalent points. By examining the
statistics of the positions of the labeled points a ‘‘Point
Distribution Mode!”’ is derived. The model gives the aver-
age positions of the points, and has a number of parame-
ters which control the main modes of variation found in
the training set.

Given such a model and an image containing an example
of the object modeled, image interpretation involves
choosing values for each of the parameters so as to find
the best fit of the model to the image. We describe a
technique which allows an initial very rough guess for the
best shape, orientation, scale, and position to be refined
by comparing the hypothesized model instance with image
data, and using differences between model and image to
deform the shape. We have previously described how to
obtain the initial guess [7]. The method has similarities
with the Active Contour Models (or snakes) of Kass er
al. [3], but differs in that global shape constraints are
applied; to make this distinction clear we have adopted
the term Active Shape Models. The key point is that
instances of the models can only deform in ways found
in the training set.

Our results demonstrate that the method for con-
structing models combined with the active matching tech-
nique provides a systematic and effective paradigm for
the interpretation of complex images. In the remainder
of the paper we review some of the relevant literature,
describe the modeling method, and show examples of
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trained models. The active matching technique is de-
scribed and results are given, showing how the models
can be used to interpret images.

2. BACKGROUND

There is a substantial literature describing the use of
flexible models or deformable templates to aid image inter-
pretation. Such models usually have a number of parame-
ters to control the shape and pose of all or parts of the
model. We give a brief review of some of the most signifi-
cant work, which relates mainly to two-dimensional
images.

2.1. “‘Hand Crafted’’ Models

Flexible models can be built up from simple subcompo-
nents, such as circles, lines, or arcs, which are allowed
some degree of freedom to move around relative to one
another, and possibly change scale and orientation. Yuille
et al. [5] model parts of the face, such as the eyes and
mouth, in this way. When attempting to fit a model to an
image they first obtain an approximate fit, which they
refine by changing different parts of the model, one at a
time. Lipson et al. [6] apply a similar scheme to map
ellipitical models of vertebrae onto CT images of the
spine. Hill ez al. [7] use a handcrafted model of the heart
in combination with Genetic Algorithm search to find the
left ventricle in echocardiograms.

Although such models can capture detailed knowledge
of expected shapes, the approach lacks generality. It is
necessary to design both a new model and a scheme for
fitting to images for each application.

2.2, Articulated Models

A number of authors consider articulated models built
from rigid components connected by sliding or rotating
joints. Beinglass and Wolfson [8] describe a scheme for
locating such objects using a Generalized Hough Trans-
form with the point of articulation as the reference point
for each subpart. Connected subparts then vote for the
same reference point. Grimson [2] has extended his “‘in-
terpretation tree’’ approach to object recognition to in-
clude some articulations, and reviews other work along
the same lines. This approach is only applicable to a re-
stricted class of variable shape problems.

2.3,

Kass et al. [3] describe flexible contour models which
are attracted to image features. These energy minimizing
spline curves are modeled as having stiffness and elastic-
ity and are attracted toward features such as lines and
edges. Constraints can be applied to ensure that they
remain smooth and to limit the degree to which they can
be bent.

Active Contour Models (‘‘Snakes’’)

Snakes can be considered as parameterized models,
the parameters being the spline control points. They are
usually free to take almost any smooth boundary with
few constraints on their overall shapes. The idea of fitting
by using image evidence to apply forces to the model and
minimizing an energy function is effective.

Hinton et al. [4] describe a type of spline snake gov-
erned by a number of control points which have preferred
‘*home’’ locations to give the snake a particular default
shape. Deformations are caused by moving the control
points away from their ‘‘home™’ locations. Although the
average shape of an object is represented, the modes of
shape variation are only coarsely defined by the number
and position of control points.

2.4. Fourier Series Shape Models

Scott [9] proposes a method of modeling shapes by an
expansion of trigonometric functions,

X=X+ 2 a, sin(nf + ¢,)
! (1)
Y=Y+ 2, b,sin(né + y,).

The shape produced is a function of the parameters a,,,
b,, ., ¥,. By varying the parameters and the number of
terms used, different shapes can be generated. Scott
shows how to fit such a shape model to image data by
varying the parameters so as to minimize an energy term.
The model is almost infinitely deformable, and contains no
prior shape information. Staib and Duncan [10] describe
similar Fourier models, and use them to interpret medical
images. They derive distributions for each of the parame-
ters over a training set and while fitting the model to an
image maximize a probability measure determining how
likely it is that the current example is the desired object.
Bozma and Duncan [11] describe how such a technique
can be used to model organs in medical images. A given
shape is represented by a list of values for the parameters
and is deformed by varying the parameters from these
values. They describe ways of incorporating relationships
between several flexible objects by applying constraints
to the parameters of the models.

Trigonometric basis functions are not suitable for de-
scribing general shapes; for example, using a finite number
of terms, they can only approximate a square corner. The
relationship between variations in shape and variations
in the parameters of the trigonometric expansion is not
straightforward.

2.5. Statistical Models of Shape

A number of workers have studied the distributions of
sets of ‘‘landmark’ points which mark significant posi-
tions on an object. Goodall [14] discusses the registration
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of shapes in arbitrary dimensions and the use of Pro-
crustes analysis for estimating the mean shape and the
covariances between landmark point coordinates and for
assessing the differences between sets of shapes.

Grenander et al. [12] describe a method of representing
a shape as a set of boundary points connected by arcs,
with a statistical model of the relationships between neigh-
boring arcs. They show how a model of a hand outline
can be manipulated to fit degraded images of hands. They
do this by considering sections of the boundary, and deter-
mine their most probable positions given the rest of the
boundary and the local image data. By traversing the
boundary in a number of sweeps the process iterates to
a solution. Grenander and Miller [13] have extended this
work to include gray-level information and multiple mod-
els. Mardia et al. [15] do something similar, representing
the boundary of a shape as a sequence of points with
distributions related by a covariance matrix. They too
cycle through the points to find the most likely position
given the image and the current shape. Both Grenander
et al. and Mardia et al. represent shapes as sets of points
in the complex plane. The points can vary about their
means following a normal distribution with covariance
matrix §, where S is modeled using either first order condi-
tional autoregressive (CAR) models or Toeplitz covari-
ance matrices. In our work we use a similar underlying
model, but avoid any dependence of the sequence of
points, thereby capturing more global shape properties.
We also use principal component analysis to simplify the
structure of the covariance matrix.

2.6. Finite Element Models

Finite element methods can be used to model variable
image objects as physical entities with internal stiffness
and elasticity. Pentiand [18] and Pentland and Sclaroff
{191 use three dimensional models which act like lumps
of elastic clay. They derive modes of vibration of a suit-
able base shape, such as an ellipsoid, and build up shapes
from different modes of vibration. The first modes are
large-scale variations of shape; the higher order modes
are more localized. To model human heads they use the
first 30 modes. They can fit models to range data by an
interative process, and can compare different heads by
comparing the parameters. Terzopoulos and Metaxas [20]
present a similar idea using deformable superquadrics.
Nastar and Ayache [21] use a finite element approach
using the vibrational modes of an example of the shape
to be modelled. Karaolani et al. [22, 23] use finite element
methods to model two dimensional objects, giving an al-
ternative to the ‘snakes’ of Kass et al. [3].

All these methods have the advantage that the models
are relatively easy to construct and allow a compact para-
metric representation of a family of shapes.

2.7. The Need for Better Models

We have described a number of existing methods for
creating and using deformable models to interpret images
containing structures of variable form. It is important to
explain at this point why we believe a new method is
required. We argue that the key issue is one of model
specificity. It is necessary that a deformable model should
be able to accommodate the range of variation found in
the objects it is used to represent, but not sufficient. The
principal role of a model is to facilitate robust automatic
interpretation even in images which are noisy or cluttered
or where parts of the objects of interest may be occluded.
If the model is nonspecific, in the sense that it is able to
deform so as to represent objects which are not valid
examples of the class to be recognized, then this ro-
bustness is compromised. Our objective has been to de-
velop models which can only deform in ways which are
characteristic of the objects they represent. In general,
the mechanisms which give rise to variability are insuffi-
ciently well understood to allow a theoretical model of
deformability to be proposed. The only realistic approach
is to “‘learn” specific patterns of variability from a repre-
sentative training set of the structures to be modeled.
Others have attempted something similar by placing limits
on model parameters on the basis of their distributions
determined from a training set. If, as is generally the case,
the model parameters are correlated over the training
set, this approach does not effectively restrict the shapes
which can be generated to ones similar to those found in
the original training set (see Fig. 1). Our approach is to
find a basis for shape representation in which the shape
parameters are uncorrelated over the training set. In this
case simple limits on each parameter constrain the model
to generate shapes similar to those in the training set. We
also show that it is straightforward to use these models
in image interpretation.
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FIG. 1. If two or more shape parameters (s; and s,) are correlated
over a set of shapes then simple ranges to the parameters do not restrict
shapes to ones similar to those in the original set.
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FIG. 2.

Image of printed circuit board showing examples of resistors.

3. POINT DISTRIBUTION MODELS

Suppose we wish to derive a model to represent the
shapes of resistors as they appear on printed circuit
boards, as shown in Fig. 2. Different examples of resistor
have sufficiently different shapes so that a rigid model
would not be appropriate. Figure 3 shows some examples
of resistor boundaries which were obtained from backlit
images of individual resistors. Our aim is to build a model
which describes both typical shape and typical variability,

FIG. 3. Examples of resistor shapes from a training set.

using the examples in Fig. 3 as a training set. We achieve
this by representing each example as a set of labeled
‘landmark’ points, calculating the mean positions of the
points and the main ways in which the points from each
example tend to vary from the mean,

3.1. Labeling the Training Set

In order to model a shape, we represent it by a set of
points. For the resistors we have chosen to place points
around the boundary, as shown in Fig. 4. This must be
done for each shape in the training set. The labeling of
the points is important. Each labeled point represents a
particular part of the object or its boundary. For instance,
in the resistor model, points 0 and 31 always represent
the ends of a wire, points 3, 4, and 5 represent one end
of the body of the resistor, and so on. The method works
by modeling how different labeled points tend to move
together as the shape varies. If the labeling is incorrect,
with a particular point placed at different sites on each
training shape, the method will fail to capture shape vari-
ability reliably. In the examples shown below the points
were either placed manually on each image, or tools were
used to mark points on boundaries segmented by hand.
It is worth noting that the points are only placed manually
during the training phase; it is not necessary to find these
points in advance when the models are used for image
interpretation—we describe later how this is achieved
implicitly using an automatic method.

Bookstein [16, 17] labeled significant points in images
of biological and medical specimens in order to examine
and measure shape changes which could be correlated
with other factors. We use representative points to cap-
ture shape constraints and build models which may be
used to construct plausible new examples of the shape
for use in image interpretation. Bookstein calls his repre-
sentative points ‘‘landmark points’ and describes them
in terms of their usefulness. For our purposes they can
be reduced to three different types:

1. points marking parts of the object with particular
application-dependent significance, such as the center of
an eye in the model of a face or sharp corners of a
boundary;

2. points marking application-independent things,
such as the highest point on an object in a particular
orientation, or curvature extrema;

1=} \=4 < A=4

2 21

FIG. 4. Thirty-two point model of the boundary of a resistor.
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3. other points which can be interpolated from points
of type 1 and 2; for instance, points marked at equal
distances a round a boundary between two type 1 land-
marks.

On the resistor shown in Fig. 4 points 0, 3, 5, 10 and
so on mark easily identified features and so are points of
type 1. The other points are equally spaced along the
boundaries between, and so are of type 3. Landmark
points of type 1 are preferable to those of type 2, since
they are in general easier to identify precisely. However,
points of type 2 and 3 are almost always necessary to
define the boundary of a flexible shape in sufficient detail
to be useful.

It is important to note that landmark points can be
used to describe single objects or sets of spatially related
objects—the points can come from several different com-
ponents of a structure. Typically we use boundary points,
and associate boundary segments with appropriate pairs
of landmark points. Although we have implemented and
investigated the use of interpolating splines to generate
boundaries using a minimal set of landmarks we find that
simply using enough type 3 points to describe the curve to
sufficient accuracy is as effective and is computationally
more efficient.

3.2. Aligning the Training Set

Our modeling method works by examining the statistics
of the coordinates of the labeled points over the training
set. In order to be able to compare equivalent points from
different shapes, they must be aligned with respect to a
set of axes. We achieve the required alignment by scaling,
rotating, and translating the training shapes so that they
correspond as closely as possible. We aim to minimize a
weighted sum of squares of distances between equivalent
points on different shapes. This is a modification of the
Procrustes method [24].

We first consider aligning a pair of shapes. Let x; be a
vector describing the n points of the ith shape in the set:

X; = (Xjgs Yios Xits Yits « « = s Xigs Yiks » + + > Xin—1
)T @
ym—] .

Let M(s, 8)[x] be a rotation by 6 and a scaling by s.
Given two similar shapes, x; and x; we can choose 8}, s;
and a translation (¢,;, ¢,) mapping x; onto M(s;, 8)[x;] +
t; so as to minimize the weighted sum

Ej =(x; - M(sja 9')[",‘] - tj)Tw(xi - M(sja 9')[",’] - tj)’ (3)
where

xjk] B ((s cos 0)x; — (s sin 0)yjk> @
o) \(ssin 0)x; + (5 cos 0)y;/

M(s,0)|:

yjk

tjz(txj’ tyj" « and (5)

) txj’ t_yj)T’
W is a diagonal matrix of weights for each point.
Details are given in Appendix A.

The weights can be chosen to give more significance
to those points which tend to be most ‘‘stable’’ over the
set—the ones which move about least with respect to the
other points in a shape. We have used a weight matrix
defined as follows: let R, be the distance between points
k and ! in a shape; let Vy be the variance in this distance
over the set of shapes; we can choose a weight, w,, for
the kth point using

n-1 ~1
wy = (;0 VRH) . (6)

If a point tends to move around a great deal with respect
to the other points in the shape, the sum of variances will
be large, and a low weight will be given. If, however, a
point tends to remain fixed with respect to the others, the
sum of variances will be small, a large weight will be given
and matching such points in different shapes will be a
priority.

We use the following algorithm to align a set of N
shapes;

* Rotate, scale, and translate each shape to align with
the first shape in the set.
* Repeat
+ Calculate the mean shape from the aligned shapes.
« Normalize the orientation, scale and origin of the
current mean to suitable defaults.
» Realign every shape with the current mean.
+ Until the process converges.

Normalizing the mean to a default scale and pose during
each iteration is required to ensure that the algorithm
converges. Without this there are in effect 4(N — 1) con-
straints on 4N variables (6, s, f,, t, for each of the N
shapes) and the algorithm is ill-conditioned—the mean
will shrink, rotate, or slide off to infinity. Constraints on
the pose and scale of the mean allow the equations to
have a unique solution. Either the mean is scaled, rotated,
and translated so it matches the first shape, or an arbitrary
default setting can be used, such as choosing an origin at
its center of gravity, an orientation such that a particular
part of the shape is at the top, and a scale such that the
distance between two selected points is one unit. Note
that normalizing the current mean shape and then aligning
the shapes to match is not the same as normalizing each
individual shape. If every shape were normalized in scale
by setting the distance between a particular two points
to be one unit, artificial correlations might be forced upon
the set, distorting the model. However, if each shape is
aligned with the mean, each will have a scale similar to
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that of the mean. In this case the landmark point positions
will be chosen to best match the mean, rather than rigidly
imposed. This leads to better models.

The convergence condition in the alignment procedure
can be tested by examining the average difference be-
tween the transformations required to align each shape
to the recalculated mean and the identity transformation.
Experiments show that the method converges to the same
result independent of which shape is aligned to in the first
stage, though a formal proof of convergence has yet to
be devised. We have considered direct methods of solu-
tion but have found problems with numerical stability.
Since computational efficiency is not an issue during
model construction the iterative method is adequate for
our purposes.

3.3. Capturing the Statistics of a Set of
Aligned Shapes

In Fig. 5 the coordinates of the some of the vertices of
the aligned resistor shapes are plotted, with the mean
shape overlaid. It can be seen that some of the vertices
show little variability over the training set, while others
form more diffuse ‘‘clouds.”” The Point Distribution
Model (PDM) seeks to model the variation of the coordi-
nates within these clouds. However, it must be remem-
bered that landmarks do not move about indepen-
dently—their positions are partially correlated.

Each example in the training set, when aligned, can be
represented by a single point in a 2n dimensional space
(see Eq. (2)). Thus a set of N example shapes gives a
cloud of N points in this 2n dimensional space. We assume
that these points lie within some region of the space,
which we call the ‘*Allowable Shape Domain,’” and that
the points give an indication of the shape and size of this
region. Every 2a-D point within this domain gives a set
of landmarks whose shape is broadly similar to that of
those in the original training set. Thus by moving about
the Allowable Shape Domain we can generate new shapes
in a systematic way. The approach given below attempts
to model the shape of this cloud in a high dimensional
space, and hence to capture the relationships between the
positions of the individual landmark points. We make the
assumption that the cloud is approximately ellipsoidal,
and proceed to calculate its center (giving a mean shape)
and its major axes, which give a way of moving around
the cloud. Later we will discuss the implications of this
ellipsoid assumption breaking down.

Given a set of N aligned shapes, the mean shape, x (the
center of the ellipsoidal Allowable Shape Domain), is cal-
culated using

z

-1
X=X )

n

FIG. 5. Scatter of some points from aligned set of resistor shapes,
with the mean shape overlaid.

The principal axes of a 2n-D ellipsoid fitted to the data
can be calculated by applying a principal component anal-
ysis (PCA) to the data [25]. Each axis gives a ‘*‘mode of
variation,”” a way in which the landmark points tend to
move together as the shape varies. For each shape in the
training set we calculate its deviation from the mean, dx;,
where

=x;— X. 8)
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We can then calculate the 2n X 2n covariance matrix,
S, using

— 1 & T
S= N,-; dx; dx]. )

The principal axes of the ellipsoid, giving the modes of
variation of the points of the shape, are described by p;
(k=1,. .. ,2n), the unit eigenvectors of S such that

Spi = Ay (10)

(where A, is the kth eigenvalue of S, A, = A, ),

PP = 1. (1)

It can be shown that the eigenvectors of the covariance
matrix corresponding to the largest eigenvalues describe
the longest axes of the ellipsoid, and thus the most signifi-
cant modes of variation in the variables used to derive
the covariance matrix. The variance explained by each
eigenvector is equal to the corresponding eigenvalue [25].
Most of the variation can usually be explained by a small
number of modes, 7. This means that the 21 dimensional
ellipsoid is approximated by a ¢ dimensional ellipsoid,
where ¢ is chosen so that the original ellipsoid has a rela-
tively small width alongaxes ¢ + 1 and above. One method
for calculating ¢ is to chose the smallest number of modes
such that the sum of their variances explains a sufficiently
large proportion of Ap, the total variance of all the vari-
ables, where

Aﬁ%&- (12)

Any point in our Allowable Shape Domain (i.e., any
allowable shape) can be reached by taking the mean and
adding a linear combination of the eigenvectors. The kth
eigenvector affects point / in the model by moving it along
a vector parallel to (dx,, dyy), which is obtained from
the /th pair of elements in p,:

pr = (dxo, dYigs -+ - s dxg dyy, - . -,

(13)
dxXppys dYin-)-

An shape in the training set can be approximated using
the mean shape and a weighted sum of these deviations
obtained from the first 1 modes:

x =X+ Pb, where (14)
P = (p;p,. . . P, isthe matrix of the first t eigenvectors,

andb = (b, b,. . . b)"isavector of weights.

The above equations allow us to generate new examples
of the shapes by varying the parameters (b,) within suit-
able limits, so the new shape will be similar to those in
the training set. The parameters are linearly independent,
though there may be nonlinear dependencies still present.
The limits for b, are derived by examining the distributions
of the parameter values required to generate the training
set. Since the variance of b, over the training set can be
shown to be A, suitable limits are typically of the order
of

=3V < b, < 3V, (15)
since most of the population lies within three standard
deviations of the mean.

Alternatively, one can choose sets of parameters
{b,, . . ., b} such that the Mahalanobis distance (D,,)
from the mean is less than a suitable value, D

(16)

If each shape parameter is normally distributed then
D, will be chi-squared distributed, and D,,, can be chosen
to include a suitably large proportion of possible realiza-
tions.

3.4, Practical Examples

The techniques described above have been used to gen-
erate point distribution models (PDMs) for both manmade
and biological objects. We present results for the set of
resistor shapes shown in Fig. 3, a set of heart ventricle
shapes, and a set of hand shapes. Other examples have
been described elsewhere [33, 34].

3.4.1. Resistor Model. The resistor shapes illus-
trated in Fig. 3 were aligned using the method described
above, with the mean shape scaled so the average distance
of the points from their center of gravity was one unit.
Figure 5 shows the mean shape. The most significant
eigenvalues of the covariance matrix derived are shown
in Table 1.

Figure 6 shows the plot of b, against b, for the training
set. The lack of structure in the scatter plot suggests that
the parameters can be treated as independent. We are
currently working on deriving more formal tests of inde-
pendence. Any dependencies between the parameters
would imply nonlinear relationships between the original
point positions and would result in some combinations of
parameters generating ‘‘illegal’” shapes. By varying the
first three parameters separately we can generate exam-
ples of the shape as shown in Figs. 7-9. Each of the
parameters represents a mode of variation of the shape
which can frequently be associated with an intuitive de-
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TABLE 1
Eigenvalues of the Covari-
ance Matrix Derived from a
Set of Resistor Shapes

Eigenvalue M X 100%
At
Ay 66%
A 8%
Ay 4%
As 3%
Ae 3%

scription of the deformation. Compare Figs. 7-9 with
Fig. 3. Varying the first parameter (b,) adjusts the position
of the body of the resistor up and down the wire. The
second parameter varies the shape of the ends of the main
body of the resistor, between tapered and square. The
third parameter affects the curvature of the wires at either
end. Subsequent parameters have smailer effects, includ-
ing the wires bending in opposite directions. These modes
of variation effectively capture the variability present in
the training set. Note that the apparently large variability
in the positions of individual points in Fig. 3 is in fact
highly constrained, and the overall variation in shape can
be described by a small number of modes. This model
has been used to locate resistors in images (see below).

3.4.2. Heart Model. Figure 10 shows examples from
a set of 66 heart chamber boundaries obtained by asking
a cardiologist to draw over echocardiogram images. Each
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FIG. 6. Plot of b, vs b, for a training set of resistor shapes.
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FIG. 7. Effects of varying the first parameter of the resistor model.

structure is represented by 96 points. This example shows
how a single model can represent several shapes and the
spatial relationships between them. The shape variation
arises from two sources: the training set was derived from
several individuals, and in each case images were taken
from different stages in the cardiac cycle, during which
the sizes and shapes of the heart chambers can change
considerably. The points represent the boundary of the
left ventricle, part of the boundary of the right ventricle,
and part of the boundary of the left atrium (below the
ventricle in the figures). Table 2 shows the eigenvalues
of the covariance matrix obtained for the training set.
Figure 11 suggests that b, and b, are again independent,
and Fig. 12 shows reconstructed shapes obtained by vary-
ing the first four model parameters in turn. The first param-
eter varies the width of the shape. The second parameter
varies the appearance of the septum (the wall separating
the left from the right ventricle). The third and fourth
parameters vary the shape of the left ventricle and the
modeled part of the atrium below. It should be emphasized
that these modes are derived entirely automatically, and
arise from a statistical analysis of the variation in the data.
This model has been used to locate the boundary of a

2 by 2/
FIG. 8. Effects of varying the second parameter of the resistor
model.
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TABLE 2
Eigenvalues of the Covari-
ance Matrix Derived from
a Set of Heart Ventricle

2, b3

> 2/4

FIG. 9. Effects of varying the third parameter of the resistor model.
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heart ventricle in echocardiograms (see below, and also
[26]).

3.4.3. Hand Model. A set of 18 hand shapes was
generated from images of the right hand of one of the
authors (Fig. 13). Each was represented by 72 points
around the boundary. These were planted on the examples
by locating 12 landmark points at the ends and joints of the
fingers and filling in the rest equally along the connecting
boundaries. A model was trained on the data, and it was
found that 96% of the variance could be explained by the
first 6 modes of variation. The first three modes are shown
in Fig. 14, and consist of combinations of movements of
the fingers. Again, a compact parameterized model has
been generated, which has been used to locate hands in
images (see below).

3.4.4. Worm Model—Limitations of the PDM. We
have found that the linear models described above are
effective in a very broad range of applications. There are,
however, some situations where the method breaks down.

Each mode of variation in a PDM moves the landmark
points along straight lines relative to the local coordinate
system. In some cases the variations in a class of shapes
would be better represented by moving points along
curves. This can be especially important when bending
or relative rotational effects occur in the class of example
shapes. Consider, for instance, the examples from the set
of ““worm’’ shapes shown in Fig. 15. The set consists of
84 artificially generated shapes which have a fixed width
but varying curvature and length, each represented by 12
labeled points (Fig. 16). Figure 17 shows the scatter of
some of the points once the shapes have been aligned.
The varying curvature leads to the points at the ends of
the shape forming a curved cloud.

The shape formed by the mean positions of the labeled
points does not have a constant width and is shorter than
the aligned versions of the training shapes. The end points,
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FIG. 10. Examples of heart ventricle shapes, each containing 96
points. FIG. 11. b, vs b, for the training set of heart ventricle examples.
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0 and 6, form curved clouds, the centroids of which do
not lie inside the clouds. The mean shape generated in
this way is thus not sufficiently similar to the training set
to give a satisfactory model. The first three modes of
variation of a PDM trained on this data are shown in Fig.
18. Ideally one would expect a model to have the first
and second order curvature as its first two modes. The
first mode of the PDM is an approximation to bending,
generated by fitting straight lines to the curved ‘‘clouds”
of points. The second mode gives the corrections required
because the linear approximation is poor. The third mode
of the model gives an approximation to second order bend-
ing. Figure 19 shows the relationship between the first
two parameters b, and b,. Though they are linearly inde-
pendent, there are clearly nonlinear relationships present.
One cannot choose the parameters independently and ex-
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Training set of hand shapes, each defined by 72 points.
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Effects of varying each of the first four parameters of the heart ventricle model individually.
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FIG. 14. Effects of varying each of the first three parameters of the
hand model individually.
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FIG. 15. Examples from a set of *'worm’’ shapes.
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pect to get a shape similar to those in the training set. We
discuss ways in which this problem might be overcome

at the end of the paper.

FIG. 17.

‘‘worms,’’ with the mean shape overlaid.
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FIG. 18. Effects of varying the first three parameters (4, b,, by) of
the “‘worm’’ model individually.

4.

USING POINT DISTRIBUTION MODELS IN IMAGE

SEARCH—ACTIVE SHAPE MODELS

Having generated flexible models, we would like to use
them in image search, to find new examples of modeled
objects in images. This involves finding the shape and
pose parameters which cause the model to coincide with
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FIG. 19. b, vs b, for the training set of “*'worm’" examples.
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the structures of interest in the image. An instance of the
model is given by

X =M(s, 0)[x] + X,, where
X =(X,Y X Y. .. , X, YT
M(s, 8)[ ]is arotation by 8 and a scaling by s,and (17)
(X., Y. is the position of the centre

of the model in the image frame.

In this section we describe an iterative method for find-
ing the appropriate X given a very rough starting approxi-
mation. Hill ez al. have described elsewhere how Genetic
Algorithm search can be used to find a good starting ap-
proximation quite rapidly [26, 7, 27]; this is applicable if
there is no prior knowledge of the expected location of
objects of interest. In practice, the starting value of X
does not need to be very close to the final solution, so
that, for many practical applications, the method below
can be used on its own.

The idea of the iterative scheme is to place the current
estimate of X into the image and examine a region of the
image around each model point to determine a displace-
ment which moves it to a better location. These local
deformations are transformed into adjustments to the
pose, scale, and shape parameters of the PDM. By enforc-
ing limits on the shape parameters, global shape con-
straints can be applied ensuring the shape of the model
example remains similar to those of the training set. The
procedure is repeated until no significant changes result.
Because the models attempt to deform to better fit the
data, but only in ways which are consistent with the
shapes found in the training set, we call them **Active
Shape Models’’ or “*Smart Snakes.”

4.1. Calculating a Suggested Movement for Each
Model Point

Given an initial estimate of the positions of a set of
model points which we are attempting to fit to an image

Model Boundary

«—— Model Foints

FIG. 20. Part of a model boundary approximating to the edge of an
image object.
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FIG. 21. Suggested movement of point is along normal to boundary,
proportional to maximum edge strength on normal.

object we need to find a set of adjustments which will
move each point toward a better position. When the model
points represent the boundaries of objects (Fig. 20) this
involves moving them toward the image edges. There are
various approaches that could be taken. In the examples
we describe below we use an adjustment along a normal
to the model boundary toward the strongest image edge,
with magnitude proportional to the strength of the edge
(Fig. 21).

An alternative approach is to generate potential images
such as those described by Kass er al. [3], possibly one
for each model point, describing the likelihood of each
point in the image being the model point. Adjustments to
each point position can then be derived from the gradient
of the potential image at the current estimate of the point’s
position.

However they are obtained, we denote the set of adjust-
ments (Fig. 22) as a vector dX, where

dX = (dX,,dY, . . . dX, . dY, ).

dXg

FIG. 22. Adjustments to a set of points.
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4.2. Computing Changes in the Pose and
Shape Parameters

We aim to adjust the pose and shape parameters of the
model to move the points from their current locations in
the image frame, X, to be as close to the suggested new
locations (X + dX) as can be arranged while still satisfying
the shape constraints of the model. If the current estimate
of the model is centered at (X, Y,) with orientation 8 and
scale s we would like first to calculate how to update
these parameters to better fit the image. This is achieved
by finding the translation (dX,, dY,), rotation d¢ and scal-
ing factor (1 + ds) which best map the current set of
points, X, onto the set of points given by (X + dX) using
the method given in Appendix A.

Having adjusted the pose variables there remain resid-
ual adjustments which can only be satisfied by deforming
the shape of the model. We wish to calculate the adjust-
ments, dx, in the local coordinate frame required to cause
the points X to move by dX when combined with the
effect of the new scale, rotation and translation pa-
rameters.

The initial position of the points in the image frame is
given by Eq. (17),

X = M(s, 0)[x] + X..

We wish to calculate a set of residual adjustments dx
in the local model coordinate frame such that

M1 + ds), (6 + do)x + dx] + X, + dX) = X + dX).
(18)

Thus
M(s(1 + ds), 0 + dO)ix + dx} = (M(s, O)x] + dX) — (X, + dX)
and since
M'(s, 000 1=M(G™", —60) ]
we obtain

dx =M((s(1 +ds)™', —(6 + d)) [y] — x, 9)
wherey = M(s, 0)[x] + dX — dX,.

Equation (19) gives a way of calculating the suggested
movements to the points x in the local model coordinate
frame. These movements are not in general consistent
with our shape model. In order to apply the shape con-
straints we transform dx into model parameter space,
giving db, the changes in model parameters required to
adjust the model points as closely to dx as is allowed.

Equation (14) gives
x =X+ Pb.
We wish to find db such that

x+dx=x+ P + db). (20)
Since there are only 7 (<2n) modes of variation avail-
able and dx can move the points in 2n different degrees
of freedom, we can only achieve an approximation to the
deformation required.
Subtracting (14) from (20) gives

dx = P(db)
S0

db = PTdx (21)
since PT = P~!, as the columns of P are mutually orthogo-
nal and of unit length.

It can be shown that Eq. (21) is equivalent to using a
least-squares approximation to calculate the shape param-
eter adjustments, db.

4.3. Updating the Pose and Shape Parameters

The equations above allow us to calculate changes to
the pose variables and adjustments, dX_, dY,, df, and ds,
to the shape parameters db required to improve the match
between an object model and image evidence. We apply
these to update the parameters in an iterative scheme,

X — X +wdX, (22)
Y=Y, +wdY. (23)
00— 6+ wygdo (24)
s— s(1 + w,ds) (25)
b—b+ W, db, (26)

where w,, w,, and w, are scalar weights, and W, is a
diagonal matrix of weights, one for each mode. This can
be the identity, or each weight can be proportional to the
standard deviation of the corresponding shape parameter
over the training set. The latter allows more rapid move-
ment in modes in which there tend to be larger shape
variations. We can ensure that the model only deforms
into shapes consistent with the training set by placing
limits on the values of b,. A shape can be considered
acceptable if the Mahalanobis distance D, is less than a
suitable constant, D, , say 3.0 (See Eq. (16)). This limit is
calculated so that almost all the training examples satisfy
Eq. (16).
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The vector b should lie within a hyperellipsoid about
the origin. If updating b using (26) leads to an implausible
shape, i.e., D, > D, and the point lies outside the ellip-
soid, b can be rescaled to lie on the closest point of the
allowed volume using

bk—»bk-(&“ﬂ) h=1,....,0. @7

Dy,

Note that we have already applied implicit limits of
zero to the weights of the eigenvectors truncated from
our representation (i.e., b; = 0 Vi > t). Once the parame-
ters have been updated, and limits applied where neces-
sary, the updated positions of the model points can be
calculated, and new suggested movements derived for
each point. The procedure is repeated until no significant
change results.

4.4. EXAMPLES USING ACTIVE SHAPE MODELS

The techniques described above have been used suc-
cessfully in a number of applications, both industrial and
medical [26, 27, 33]. Here we show results using the resis-
tor, heart, and hand models described above.

In each case initial estimates of the position, orienta-
tion, and scale are made, and the shape parameters of the
Active Shape Model (ASM) are initialized at zero (b, =
0(i=1,. .. ,1). Suggested movements for each model
point are calculated by finding the strongest edge (of the
correct polarity) along the normal to the boundary at the
point (see 4.1 and Fig. 21). Adjustments to the parameters
are calculated and applied, and the process is repeated.

4.4.1. Locating Resistors. We have constructed a
Point Distribution Model of a resistor, representing its
boundary using 32 points (Section 3.4.1). Figure 23 shows
an image of part of a printed circuit board with the resistor
boundary model superimposed as it iterates toward a com-
ponent in the image. We interpolate an additional 32
points, one between each pair of model points around the
boundary, and calculate adjustments to each point by
finding the strongest edge along profiles 20 pixels long
centred at each point. We use a shape model with 5 de-
grees of freedom. Each iteration of the ASM takes about
0.015 s on a Sun Sparc 10 Workstation.

The method is effective in maintaining the global shape
constraints of the model and works well, given a suffi-
ciently good starting approximation; we discuss methods
of obtaining such initial hypotheses elsewhere [26, 27].

4.4.2. Locating Heart Ventricles. Figure 24a shows
an example of an echocardiogram. The left ventricle is in
the top right of the imaged region. Figure 24b shows the
initial placement of an instance of the 96 point heart cham-
ber model described above (Section 3.4.2). Figure 24c

shows the ASM after 80 iterations. After 200 iterations
(Fig. 24d) the model gives a good fit to the data. The shape
model used has 12 degrees of freedom. The adjustments to
each point are calculated using the strongest edge in a
smoothed image along a profile 40 pixels long centered
on the point. Each ASM iteration takes about 0.03 s on
a Sun Sparc 10 workstation. In this example the model
is able to infer the position of the parts of the boundary
where there are missing data (for example, the top of the
ventricle) by using the knowledge of the expected shape
combined with information from the areas of the image
where good evidence for the ventricle wall can be found.
Without the prior knowledge of the shape given by the
model it would not be possible to delineate the ventricle
boundary accurately. Further medical applications of the
method are described in [33].

4.4.3. Locating Hands. We have constructed a Point
Distribution Model of a hand, representing the boundary
using 72 points (Section 3.4.3). Figure 25 shows an image
of one of the author’s hands amid some clutter and occlu-
sion, and an example of the model iterating towards it.
We calculate adjustments to each point by finding the
strongest edge on a profile 35 pixels long centred on the
point. The shape model has 8 degrees of freedom, and
each ASM iteration takes about 0.02 seconds on a Sun
Sparc 10 Workstation. The result demonstrates that the
method can deal with clutter and limited occlusion.

‘5. DISCUSSION

The examples given above illustrate the main features
of our approach. Using a single method, specialized only
by training with an appropriate set of examples, we have
been able to locate automatically a range of structures in
complex, noisy, and cluttered images. Other examples
reported elsewhere include faces [36], handwritten char-
acters [36], anatomical structures in magnetic resonance
images of the brain and abdomen [33], vertebrae in radio-
graphs [33], parts of the foot in pressure images [38] and
all the parts in an automobile brake assembly [34]. We
discuss below some of the issues which arise from this
work, including areas where further development is re-
quired.

5.1. Point Distribution Models

S.1.1. Choice of Model Points and Training Exam-
ples. 1t is important that landmark points be placed on
the training images as accurately as possible. If a point
is not in the correct position on each shape, the model
will be unable to correctly represent the position of that
point—it will include terms describing the noise caused
by errors in point location. It is equally important to ar-
range that all the examples used to train the model are
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FIG. 23. Section of printed circuit board with resistor model superimposed, showing its initial position and its location after 30, 60, 90, and
120 iterations.

similarly aligned with respect to a set of axes, to ensure where the shapes of organs are very flexible, the automatic
that the labeled points in different shapes are being com- least-squares alignment method is essential.

pared correctly. In some cases an obvious alignment is Of course, placing every point by hand on every training
apparent, but in others, particularly medical examples image can be very time consuming. We are developing
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FIG. 24.

tools to ease the procedure. Techniques such as those
described by Burr [29] and the Finite Element Models of
Sclaroff and Pentland [30] or Nastar and Ayache [21] may
be able to assist the user in locating point correspondences
during this training phase.

In some cases occlusion and noise will lead to images
in which some points cannot be accurately located. It is
straightforward to adjust the calculation of mean shape

Echocardiogram image with heart chamber boundary model superimposed, showing its initial position and its location after 80 and
200 iterations.

(7) and the covariance matrix (9) to give a weighting to
each point in each example in the training set. When some
points are missing, the weights for known points can be
set to unity; those for unknown points can be set to zero.
As long as only a small proportion of points are missing
in any one example, and no points are missing from all
examples, it is still possible to build useful models.

In principle it is possible to ‘‘overtrain’’ a model. Sup-
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FIG. 25.

COOTES ET AL.

Image of author’s hand with hand model superimposed, showing its initial position and its location after 100, 200, and 350 iterations.
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pose that a large proportion of the examples were close
to the mean and there were only one or two examples
demonstrating some particular form of shape variation.
It is possible that when the number of modes to be used,
t, is chosen, the mode which best describes the infrequent
shape variation will be truncated, since it will explain only
a small amount of the total variance. However, since the
training examples are typically selected and labeled by
hand, it is time consuming and inefficient to include many
similar shapes—it is better to choose a variety of different
shapes which cover the whole range of variations one is
likely to observe (where such are available). It is at this
stage that the expert knowledge of a human can play a
part.

5.1.2. Multipart Models. The heart examplie illus-
trates an important fact—that the points used to construct
a PDM and its derived ASM do not need to belong to a
single object or shape. The connectivity of the points is
not relevant to the construction of the PDM and is only
used by the ASM to determine the direction of the local
normal at each point during image search. The shapes of
multiple subparts of a complex assembly and the spatial
relationships between them can thus be represented by a
single PDM. A significant advantage of handling shape and
spatial relationships in a unified way is that correlations
between the positions and shapes of subcomponents can
be modeled; this is important, for example, in assemblies
of interlinked mechanical components or in medical im-
ages where several organs are ‘‘packed’ into the same
cavity.

5.1.3. Modeling Shape Variation. We showed in Sec-
tion 3.3 that each aligned shape can be considered as a
single point in 2n dimensional space, and the whole train-
ing set as a cloud of points in this space. We attempt to
model this cloud using the idea of an Allowable Shape
Domain. For the search method to work effectively it is
important that this domain be simply connected, and that
we have a simple method of navigating around the domain.
The assumption that the domain is an ellipsoid (or a box
with the same axes) allows us to do this. However, under
certain circumstances this is an inappropriate model.
When there is a large degree of bending or relative rotation
in the training set, nonlinear relationships between land-
marks can give the cloud in the 2n dimensional space a
‘“banana’’ shape or worse. Under these circumstances,
as was demonstrated in Section 3.4.4, the ellipsoidal as-
sumption gives a shape model which can generate shapes
badly distorted when compared with those from the train-
ing set. The model is not as specific as one would like,
and only a subset of the shapes it can generate would be
considered ‘‘legal.”” In some situations this is not disas-
trous. For instance, the worm model given can be used
successfully to locate examples of worms in images, but

the models are more susceptible to being distorted by
noise or clutter than a more specific model would be.

A more general model of the allowable shape domain
could lead to more specific shape models. We have experi-
mented using polynomials, rather than straight lines, for
the axes of the domain with encouraging results. Instead
of each mode defining straight line motion for each point,
the points follow polynomial curves as the parameter var-
ies. Results will be presented in a further paper.

5.1.4. Dealing with Small Numbers of Examples. If
there are fewer training examples, N, than point coordi-
nates (2n), as is often the case, particularly for complex
models, there can be no more than N — 1 degrees of
freedom in the model. The principal component analysis
required for the method uses the eigenvectors of the 2n X
2n matrix S (Eqs. 9, 10). When N < 2n this matrix has
no more than N — 1 nonzero eigenvalues. Calculating all
2n eigenvectors in this case is unnecessary. An efficient
way of calculating the eigenvectors associated with non-
zero eigenvalues is given in Appendix B.

5.1.5. Extensions to the Model. Rather than have one
“flat’> PDM representing a complex assembly, it is possi-
ble to build a hierarchical PDM in which the top layer
controls the position, scale, orientation, and shape param-
eters of the layer below. The bottom layer can consist of
a number of subcomponents, each represented by a *‘flat™’
PDM. Varying the parameters of the top layer varies the
pose, scale, and shape of the various components below.
This avoids problems with the PDM due to rotating sub-
components—their orientation relative to the rest of the
assembly can be modeled explicitly, rather than implicitly
in a single-layer linear PDM.

It is also easy to extend the Point Distribution Model to
deal with three dimensional data, for example, 3D medical
images. We have recently described a successful system
for automated interpretation of 3D Magnetic Resonance
images of the brain using a 3D PDM [35].

5.1.6. The Chord Length Distribution. Elsewhere we
have described how to derive a shape model from a train-
ing set using the distances between pairs of points—a
Chord Length Distribution Model [31]. The distance, R;;,
between every pair of points i, j in each example of the
training set is calculated, and the way these chord lengths
vary is modeled by calculating their mean and covariances
and applying a Principal Component Analysis. A model
with several parameters is obtained, which returns sets
of interpoint distances, R, from which a new shape can be
constructed. Varying the parameters varies the distances,
which causes the shape to change. Such a system is able
to model the rigid parts of an object regardless of their
orientation, since it relies only on internal distances.
Though this technique is sometimes better than the linear
PDM at representing objects which can bend (such as
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the “‘worms’’), the reconstruction of the shape from the
distances between points is iterative and slow. A refine-
ment technique using such a model would be complex,
leading us to favour the PDM for practical applications.

5.1.7. Use as a Classifier. A PDM can also be used
in a classifier. Given an example of a shape, an estimate
can be made of how likely that example is to be a member
of the class of shapes described by a model. If labeled
points are placed on the example and the point set is
aligned with the mean shape, we can calculate the model
parameters required to generate the example. The distri-
butions of the parameters can be estimated from the train-
ing set, allowing probabilities to be assigned. Alterna-
tively, classification of unknown objects in images can be
made by training a model for each class to be considered.
Given a new image, the ASM technique is used to fit each
model to the image data. The one which gives the best
fit to the image is chosen as the result [36].

5.2. Using PDMs in Image Search

We have shown that ASMs are effective at locating
known objects in images given initial estimates of posi-
tion, scale, and orientation. How good an estimate is
required will depend on how cluttered the image is and
how well the model describes the objects in the image.
For instance, unless some points in the model are close
enough to the image example for their search profiles to
overlap appropriate edges on the target object, the model
instance cannot ‘‘see’’ the target, and will not be able to
move towards it. We have found that techniques using
Genetic Algorithms [26, 7, 27] provide a suitably close
initial estimate to achieve successful refinement with
ASMs.

5.2.1. Occlusion and Clutter. The hand example dem-
onstrates that ASMs can deal successfully with occlusion
and clutter. The heart example also shows that the method
works with noisy images and missing data. As noise, clut-
ter, and occlusion increase it becomes more likely that
the models will latch onto the wrong edges, aithough the
constraints applied by the PDM ensure that the shape of
the final result is **sensible,”” even when it does not locate
all the edges correctly. This is most likely to happen when
the clutter has a similar structure to that of the objects
being modeled and is thus most likely to be mistaken for
some part of the object. Because the models we use are
specific, we argue that we are applying the strongest possi-
ble shape-based constraints. In extreme cases, where the
method fails, the fault lies in our approach to incorporating
the image evidence—this is discussed below.

5.2.2. Updating the Model Parameters. How sug-
gested adjustments are found for each point is important.
Calculating the suggested movement by looking for strong

nearby edges is simple and has proved effective in many
cases. However, to search for more complex objects,
where the model points do not necessarily lie on strong
edges, more sophisticated algorithms are required. Poten-
tial maps can be derived, describing the likelihood for
each point in an image that it is a particular model point.
During search each model point attempts to move to more
likely locations, climbing hills in the potential map. Alter-
natively, a model of the expected gray levels around each
model point can be generated from the training examples;
during image search each point is then moved toward the
nearby area which best matches its local gray level model.
Experiments using the latter technique have shown that
it is more flexible and less sensitive to noise and clutter
than simply searching for strong edges {32, 34].

By allowing the model to deform, but only in ways
seen in the training set, we have a powerful technique for
refinement. The constraints on the shape of the model are
applied by the limits on the shape parameters. The 2n —
t unrepresented modes of variation effectively have limits
of zero on their parameters. Rather than fixed limits being
used to enforce shape constraints, restoring forces in the
parameter space could be applied, pulling the parameters
back toward zero against the external ‘*forces’’ from the
image;

b—b+ Wdb - kWb (0<k, <1). (28)

This would give more weight to solutions closer to the
mean shape, and require strong evidence for shapes which
were considerably deformed. However, since this would
be likely to lead to compromise solutions between image
data and model we favor the fixed limit approach.

5.2.3. Comparison with Other Work. The work we
present here can be thought of as a two dimensional appli-
cation of Lowe’s refinement technique [37]. Because of
the linear nature of the Point Distribution Model, the
mathematics is considerably simpler and leads to rapid
execution.

Our Active Shape Models are superficially similar to
Active Contour Models (Snakes) and Finite Element
Models (FEMs). Each have their advantages. Snakes and
FEMs can be created relatively easily and have the ability
to locate partially occluded objects in noisy, cluttered
scenes. The models are not, however, very specific, so
under difficult conditions they can generate implausible
interpretations. ASMs are harder to create because they
require the user to annotate each of a set of training images
with the correct interpretation. However, they model the
allowed variability more specifically and are thus more
robust to noise, clutter, and occlusion. A detailed experi-
mental comparison between ASM and FEM methods is
beyond the scope of this paper, but we hope to present
results in the near future. We are also working actively
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on methods which incorporate the advantages of both
approaches.

5.2.4. A Framework for Object Modeling and Recogni-
tion. We have conducted experiments which suggest
that our local optimization method can be fruitfully used
in conjunction with a Genetic Algorithm (GA) search
[26-28]. The GA can be run as a cue generator to produce
a number of object hypotheses, which can be refined using
the Active Shape Model. Alternatively, the ASM can be
combined with the GA search, applying one iteration at
each generation of the Genetic Algorithm. Both tech-
niques have been used successfully to locate complex
structures in a variety of images.

6. CONCLUSIONS

We have described Point Distribution Models
(PDMs)—statistical models of shape which can be con-
structed from training sets of correctly labeled images. A
PDM represents an object as a set of labeled points, giving
their mean positions and a small set of modes of variation
which describe how the object’s shape can change.
Applying limits to the parameters of the model enforces
global shape constraints ensuring that any new examples
generated are similar to those in the training set. Given
a set of shape parameters, an instance of the model can
be calculated rapidly. The models are compact and are
well suited to generate-and-test image search strategies.

Active Shape Models (ASMs) exploit the linear formu-
lation of PDMs in an iterative search procedure capable of
rapidly locating the modeled structures in noisy, cluttered
images—even if they are partially occluded. Object identi-
fication and location are robust because the models are
specific in the sense that instances are constrained to be
similar to those in the training set.

We have demonstrated the ability to create compact
models of resistors, hearts (in echocardiograms), and
hands. We have also shown that these models can be
used successfully in image search. Using a conventional
workstation a good interpretation can typically be ob-
tained in seconds. We have described elsewhere various
other applications in which the same methods have been
exploited successfully, including examples where very
complex structures (e.g., faces and automobile brake as-
semblies) are modeled. The important point to stress is
that precisely the same software can be applied to a broad
range of image interpretation problems—both medical
and industrial—specialized only by training with suitable
examples.

We believe that this approach holds considerable prom-
ise as a practical but generic technique for automated
image interpretation.

APPENDIX A: ALIGNING A PAIR OF SHAPES

Given two similar shapes, x; and x,, we would like to
choose a rotation, 0, a scale, s, and a translation, (1, t,),
mapping x, onto M(x,) + t so as to minimize the weighted
sum

E = (x; — M(s, 8)[x,] — )TW(x; — M(s, 8)[x;] — 1), 3
where

Mis. 0)|:xjk:| _ ((s €cos 8)x; — (s sin B)yjk) , @

Vi (ssin@)x; + (s cos By

t=(,0,. .. 1, 1), (29

and W is a diagonal matrix of weights for each point. If
we write

a, =scosf a,=ssind,
a least-squares approach (differentiating with respect to
each of the variables a,, a,, t., 1,) leads to a set of four

linear equations,

Xz _Y2 W 0 a.‘. Xl

v, x, o wlla| [
zZ 0 X, |l ) (30)
O Z - Yz XZ t.\, C2
where
n—1 n—1
X;= 2 wixg Y= wog 3D
=0 =0
n=1 n—1
Z=2 wxh+y) W=w, (32)
k=0 k=0
n-1
¢ = AZO Wil X Xk T YY) (33)
n—1
Cy = 2 wilyiXag = Xy 0m0)- (34)

k=0

These can be solved for a,, a,, t,, and ¢, using standard
matrix methods.

APPENDIX B: CALCULATING THE EIGENVECTORS OF
THE COVARIANCE MATRIX WHEN THERE ARE FEWER
SAMPLES THAN CO-ORDINATES

When there are fewer training examples, N, than point
co-ordinates, 2n, the eigenvectors of the 2n X 2n covari-
ance matrix S can be calculated from the eigenvectors of
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a smaller N x N matrix derived from the same data.
Because the eigenvector calculation time goes as the cube
of the size of the matrix, this can give substantial time

savings.
We have N examples, x; (i = 1,. . . , N). Let D be
a 2n x N matrix with these as its columns;
D=(xx...Xxy. (35)
We can write the covariance matrix, S, as
L DD' (36)
N .
Let T be the N X N matrix
1T
T= ND D, 37N

andlete; (i = 1,. . . , N) be the unit, orthogonal eigen-
vectors of T with corresponding eigenvalues v;:

Te,=ve, (i=1,...,N). (38)
Then
%DTDei = ye,. (39)
Premultiplying by D,
~DD'De, = v De, (40)
S(De) = y(De)). (41)

Thus if ¢;is an eigenvector of T, then De; is an eigenvec-
tor of S and has the same eigenvalue. The N unit orthogo-

nal eigenvectors of S are thenp; (i = 1,. . . , N), where
p. = ——De, (42)
1 ‘\/:;’N 1

with corresponding eigenvalues \; = v,. The scaling factor
in Eq. 42 is required to give the eigenvectors unit length.
Mutual orthogonality is easily shown:

PITPJ = '—1—‘ e;rDTDej = ieiTTej

‘YiN i
=1 (i=))
= ele; T “43)
=0 (i#))
ACKNOWLEDGMENTS

This work was funded by the Science and Engineering Research
Council under the Information Engineering Advanced Technology Pro-

gramme (Project Number 3/2114). Tim Cootes is currently funded by
an SERC Post-Doctoral Fellowship. The authors thank the other mem-
bers of the Wolfson Image Analysis Unit particularly D. Bailes and A.
Hill, for their help and advice, and the anonymous reviewers for their
suggestions.

REFERENCES

1. R. T. Chin and C. R. Dyer, Model-based recognition in robot vision,
Comput. Surv. 18, 1986, 67-108.

2. W. E. L. Grimson, Object Recognition by Computer: The Role of
Geometric Constraints, MIT Press, Cambridge, MA, 1990.

3. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour

models, in Proceedings, First International Conference on Com-
puter Vision, pp. 259-268, IEEE Comput. Soc. Press, 1987.

4. G. E. Hinton, C. K. I. Williams, and M. D. Revow, Adaptive elastic
models for hand-printed character recognition, in Advances in Neu-
ral Information Processing Systems 4 (J. E. Moody, S. J. Hanson,
and R. P. Lippmann, Eds.), Morgan Kauffmann, San Mateo, CA,
1992.

5. A. L. Yuille, D. S. Cohen, and P. Hallinan, Feature extraction from
faces using deformable templates, Int. J. Comput. Vision 8, 1992,
99-112.

6. P. Lipson, A. L. Yuille, D. O'Keeffe, J. Cavanaugh, J. Taaffe, and
D. Rosenthal, Deformable templates for feature extraction from
medical images, in Proceedings of the First European Conference
on Computer Vision (O. Faugeras, Ed.), Lecture Notes in Computer
Science, pp. 413-417, Springer-Verlag, Berlin/New York, 1990.

7. A. Hill and C. J. Taylor, Model based image interpretation using
genetic algorithms, Image Vision Comput. 10, 1992, 295-300.

8. A. Beinglass and H. J. Wolfson, Articulated object recognition, or:
How to generalize the generalized Hough transform in Proceedings,
IEEE Computer Society Conference on Computer Vision and Pai-
tern Recognition 1991, pp. 461-466.

9. G. L. Scott, The alternative Snake—And other animals, in Proceed-
ings, 3rd Alvey Vision Conference, Cambridge, 1987, pp. 341-347.

10. L. H. Staib and J. S. Duncan, Parametrically deformable contour
models, in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, San Diego, 1989, pp. 427-430.

11. H.l. Bozma and J. 8. Duncan, Model-based recognition of multiple
deformable objects using a game-theoretic framework, in Informa-
tion Processing in Medical Imaging—Proceedings of the [2th Inter-
national Conference, pp. 358-372, Springer-Verlag, Berlin/New
York, 1991.

12. U. Grenander, Y. Chow, and D. M. Keenan, Hands. A Pattern
Theoretic Study of Biological Shapes, Springer-Verlag, New York,
1991.

13. U. Grenander and M. 1. Miller, Representations of knowledge in
complex systems. J. R. Stat. Soc. B, in press.

14. C. Goodal!, Procrustes methods in the statistical analysis of shape
(with discussions), J. R. Stat. Soc. B. 583, 1991, 285-339.

15. K. V. Mardia, J. T. Kent, and A. N. Walder, Statistical shape
models in image analysis, in Proceedings of the 23rd Symposium
on the Interface, Seattle 1991, pp. 550-557.

16. F. L. Bookstein, Morphometric Tools for Landmark Data, Cam-
bridge Univ. Press, London/New York, 1991.

17. F. L. Bookstein, Principal warps: Thin-plate splines and the decom-
position of deformations, IEEE Trans. Pattern Anal. Mach. Intell.
11, 1989, 567-58S.

18. A. Pentland, Automatic extraction of deformable part models, Int.
J. Comput. Vision 13, No. 2, 1990, 107-126.



9

20.

21.

22.

23.

24.

25.

26.

27.

28.

ACTIVE SHAPE MODELS

. A. Pentland and S. Sclaroff, Closed-form solutions for physically
based modeling and recognition, /EEE Trans. Pattern Anal. Mach.
Intell. 13, 1991, 715-729.

D. Terzopoulos and D. Metaxas, Dynamic 3D models with local
and global deformations: Deformable superquadrics, IEEE Trans.
Pattern Anal. Mach. Intell. 13, 1991, 703-714.

C. Nastar and N. Ayache, Fast segmentation, tracking and analysis
of deformable objects, in Proceedings, International Conference
on Computer Vision, 1993, pp. 275-279, IEEE Comput. Soc. Press,
1993.

P. Karaolani, G. D. Sullivan, K. D. Baker, and M. J. Baines, A
finite element method for deformable models, in Proceedings of the
Fifth Alvey Vision Conference, Reading, 1989, pp. 73-78.

P. Karaolani, G. D. Sullivan, and K. D. Baker, Active contours
using finite elements to control local scale, in Proceedings, British
Machine Vision Conference 1992, pp. 481-487, Springer-Verlag,
Berlin/New York, 1992.

J. C. Gower, Generalized Procrustes analysis, Psychometrika 40,
1975, 33-51.

R. A. Johnson and D. W. Wichern, Multivariate Statistics, A Practi-
cal Approach, Chapman & Hall, London/New York, 1988.

A. Hill, T. F. Cootes, and C. J. Taylor, A genetic system for image
interpretation using flexible templates, in British Machine Vision
Conference, Springer-Verlag, 1992.

A. Hill, C. J. Taylor, and T. Cootes, Object recognition by flexible
template matching using genetic algorithms, in Proceedings, Euro-
pean Conference on Computer Vision (G. Sandini, Ed.), pp.
852-856, Springer-Verlag, Berlin/New York, 1992,

A. Hill, A. Thornham, and C. J. Taylor, Model-based interpretation
of 3D medical images, in Proceedings, British Machine Vision Con-
ference 1993 (J. lllingworth, Ed.), Vol. 2, pp. 339-348, BMVA
Press, 1993,

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

59

D. J. Burr, A dynamic model for image registration, Comput. Graph-
ics Image Process. 15, 1981, pp. 102-112.

S. Sclaroff and A. Pentland, A model framework for correspondence
and description, in Proceedings, International Conference on Com-
puter Vision, 1993, pp. 715-729, IEEE Comput. Soc. Press, 1993,
T. F. Cootes, D. H. Cooper, C.J. Taylor, and J. Graham, A trainable
method of parametric shape description, Image Vision Comput. 10,
1992, 289-294.

T. F. Cootes and C. J. Taylor, Active shape model search using
local grey-level models: A quantitative evaluation, in Proceedings,
British Machine Vision Conference 1993 (J. lllingworth, Ed.), Vol.
2, pp. 639-648, BMVA Press, 1993.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, The use of
active shape models for locating structures in medical images, in
Proceedings, Information Processing for Medical Imaging (H. H.
Barrett and A. F. Gmitro, Ed.), pp. 33-47, Springer-Verlag, Berlin/
New York, 1993.

T. F. Cootes, C. J. Taylor, A. Lanitis, D. H. Cooper, and J. Graham,
Building and using flexible models incorporating grey-level informa-
tion, in Proceedings, International Conference on Computer Vision,
pp. 242-246, IEEE Comput. Soc. Press, 1993,

A. Hill, A. Thornham, and C. J. Taylor, Model-based interpretation
of 3D medical images, in Proceedings, British Machine Vision Con-
Sference, 1993 (J. lllingworth, Ed.), Vol. 1, pp. 339-348, BMVA
Press, 1993.

A. Lanitis, C. J. Taylor, and T. F. Cootes, A generic system for
classifying variable objects using flexible template matching, in Pro-
ceedings, British Machine Vision Conference, 1993 (J. lllingworth,
Ed.), Vol. 1, pp. 329-338, BMVA Press, 1993.

D. G. Lowe, Fitting parameterized three-dimensional models to
images, IEEE Trans. Pattern Anal. Mach. Intell. 13, 1991, 441-450.
J. A. Grogan, Automated Analysis of Pedobarograph Images, M.
Sc. Thesis, Victoria University of Manchester, Oct. 1993,



