PURPOSE

Cardiovascular diseases (CVD) are the prevalent cause of death in Europe and the United States. This is despite general acceptance that a healthy lifestyle and risk factor management can prevent the development of CVD. Furthermore, two-thirds of women who die suddenly from CVD have no previously recognized symptoms. Thus, it is essential to find effective and broadly applicable indicators of cardiovascular risk that may prompt timely intervention.

Abdominal aortic calcifications (AAC) as observed by standard lumbar lateral radiographs can be predictors of cardiovascular mortality and correlate strongly with coronary artery calcifications. We investigated whether size, shape, and distribution of AACs related to mortality and how such prognostic markers performed compared to the state-of-the-art marker on lumbar lateral radiographs, AC24, introduced by Kauppila et al.

METHOD AND MATERIALS

For 308 post-menopausal women we quantified the number of abdominal aortic calcifications (AAC) and the percentage of the abdominal aorta that the lesions occupied in terms of their area, simulated area, thickness, wall coverage and length. We analysed inter-/intra-observer reproducibility and predictive ability of mortality after 8-9 years. This was done via a Cox regression with and without adjustment for biological risk factors leading to hazard ratios (HR).

RESULTS

The coefficient of variation was below 25% for all markers. The strongest individual predictors were the number of calcifications (HR=2.4, p<0.001) and the simulated area percentage (HR=2.96, p<0.001) of a calcified plaque and, unlike AC24 (HR=1.66, p<0.001), they allowed mortality prediction also after normalization for traditional risk factors. In a combined Cox regression model the strongest complementary predictors were the number of calcifications (HR=2.76, p<0.001) and the area percentage (HR=-3.84, p<0.001).

CONCLUSION

While AC24 definitely captures essential information about abdominal aortic calcifications (AAC), the results demonstrate that some of these novel markers may capture additional or complementary information. Therefore, the proposed radiographic AAC markers may allow improved screening and risk monitoring of CVD mortality.

CLINICAL RELEVANCE/APPLICATION

New imaging biomarkers based on shape, size and distribution of lumbar aortic calcifications as seen in lumbar lateral radiographs may allow improved screening and risk monitoring of CVD mortality.

FIGURE (OPTIONAL)

** no data entered **
Disclosures:

Nothing to disclose: Melanie Ganz
Nothing to disclose: Mads Nielsen
Research grant, AstraZeneca PLC Marleen de Bruijne
Employee, SYNARC Inc Erik Dam
Employee, Nordic Bioscience A/S Shareholder, Nordic Bioscience A/S Morten Karsdal
Shareholder, Nordic Bioscience A/S Shareholder, SYNARC Inc Claus Christiansen

Questions:

1. **Financial Meeting Support:** As an ACCME provider, RSNA strives to maintain the highest standards in development of its educational programming to ensure it remains free of commercial influence. In addition to providing statements of financial disclosure we are requiring that all presenters complete the following information:

 Please list below who you are receiving financial support from:

 No response

2. **Submission of Manuscript:** An important part of scientific progress is the timely publication of new research; also important is the thorough peer review of all manuscripts prior to acceptance for publication. (To view how to submit your manuscript, click on HELP>Publications). Please tell us to which of the following journals you plan to submit your work (select one):

 No response

 If you marked Other please indicate the name of the journal:

 No response

3. **Institution:** RSNA provides department chairs a list of presenters of accepted presentations associated with physicians from their institutions. In order to ensure that this work is appropriately recognized, please indicate the institution at which the presenter is affiliated:

 Imaging Group, Department of Computer Science, University of Copenhagen

4. **Department Chair:** Please indicate the name of the presenter's department chair or highest ranking supervisor:

 Mads Nielsen

5. **Department Chair Email Address:** Please provide the email address for the person indicated above:

 madsn@diku.dk