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Abstract. The presented algorithm was used to participate in the EXACT09 
airway segmentation challenge of the Second International Workshop on 
Pulmonary Image Analysis (MICCAI 2009). The motivation of the presented 
simple algorithm mainly is to provide a benchmark what results can be 
achieved with very basic means in comparison to highly sophisticated 
algorithms. The presented algorithm uses an entirely local centricity property 
and an amorphous voxel-based region growing. Furthermore, it uses only raw 
image density value, no derivatives, or pre-processing filters. The algorithm 
produces quite reasonable results while being characterized by a very simple 
implementation, primitive data structures and quick runtime.
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1 Motivation

The motivation of the presented simple algorithm mainly is to provide a benchmark 
what results can be achieved with very basic means in comparison to highly 
sophisticated algorithms [1-7] (using e.g. anatomical knowledge, multi-scale, multi-
resolution, multi-stage, multi-rule approaches). The presented algorithm is a kind of 
zero-order algorithm in that it uses an entirely local centricity property and an 
amorphous voxel-based region growing which is not aware of segments, centerlines, 
branching points, directional orientation, and does not use tree-specific assumptions 
such as branching angles etc. It uses only raw image density value, no derivatives, or 
pre-processing filters.

Earlier papers with participation of the authors of this paper have been based on a 
front-propagation algorithm [8-14] which was use front-splitting-detection and 
segment branching heritage. The algorithm discussed here is not related to these 
earlier works.
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2 Algorithmic Details

The algorithm consists only of a voxel-wise centricity measure which is used for a 
prioritized region growing in conjunction with two termination criteria. The centricity 
measure aims at quantifying how central a given voxel location is to the surrounding 
airway.

2.1  Local centricity measure

From a voxel position x, a number of N rays is cast in 
a three-dimensional isotropic fashion into all 
directions. We used N rays sampled on the surface of 
a sphere according to a recursively subdivided 
icosahedron. The N rays are pairwise antiparallel in 
N/2 directions. The image density values are sampled 
in steps of dr along these rays using trilinear 
interpolation. Each ray is terminated if the density 
difference to the starting point x is higher than ΔW
(assuming that this means that the airway wall has 
been encountered), or if becomes longer than a 
maximum ray length rmax.  From each two antiparallel 
radii ri and ri’  the diameter di is computed as   
di = ri + ri’. Out of the N/2 diameters di the N/4 
shortest diameters are selected, i.e. all diameters 
below the median diameter (assuming that these 
diameters are approximately normal to the direction 
of the airway cylinder). From these selected radii the 
mean R and relative standard deviation σR / R is 
computed. The standard deviation of the radii 
becomes small or ideally vanishes if x is located 
centrally in the surrounding airway. Therefore we 
define the centricity as c(x) = 1 –  σR / R  (ideally 1 if 
x is centered in a surrounding sphere; approximating 
1 for a cylinder using the median diameter selection; 
decreasing to < 0 for strong deviations from a 
cylinder).
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2.2 Prioritized region growing

Starting from a seed point in the trachea (section 2.4), a three-dimensional region 
growing proceeds (using a 6-neighborhood) into all connected voxels below a certain 
density threshold Dair and above a certain minimum centricity value of c(x) ≥ cmin.
The growth is prioritized by addressing the highest centricity values first. 
   The growth is otherwise limited only by the following rule: If the mean diameter 
R(x) for a certain voxel is larger than 2 times the smallest radius encountered on the 
individual growth path of this voxel (along the path of predecessor voxels), then this 
voxel is not allowed to spawn any successor voxels. 
    Due to the centricity prioritization, the growth typically follows along the 
centerlines. As an optional post-processing step, a local dilation of the grown voxels 
is performed using the mean radius estimate R(x) around each voxel.

2.3  Runtime and dual-scale-region growing

The median run-time of the algorithm on the training and test datasets was 19 seconds 
with a rather large standard deviation of 15 sec (on a 3 GHz single processor, using a 
naïve implementation of ray-casting and tri-linear interpolation). However, in a 
voxelwise region growing implementation (6-neighborhood) most of the runtime is
actually spent to fill the relatively large volume of the trachea. Due to its simple non-
delicate structure, the filling of the trachea could be done much more efficiently by 
other algorithms. On the other hand the paradigm of this algorithm was to keep it as 
simplistic as possible and not to use hybrid approaches. In a slight deviation from the 
simplicity-paradigm, we have modified the region-growing such that if the local 
radius estimation at a certain position is larger than 5 mm, then instead of a single 
voxel a 3×3×3 compound-voxel is grown without re-evaluation of the local centricity 
for each of the additionally included 26 voxels. In this way the average runtime is 
reduced to 5 sec without changing the results in the finer airways.

2.4  Trachea seed finding
The axial slice images are converted to binary images using a threshold of Dair and a 
two-dimensional connected component analysis is used on each slice to identify blobs 
with extents below 2 rmax . For each 2D-blob, a figure of merit is computed from its
roundness and proximity to the image center. Then an iterative clustering scheme is 
applied which clusters blobs from adjacent slices to linear structures. These clusters 
are compared by virtue of mean blob-merit, blob-radius similarity, linear fit goodness, 
and closeness to craniocaudal orientation, and the best cluster is selected to represent 
a piece of the trachea, from which a central seed point is derived.
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2.5  Parameters

The parameter values were not optimized on the EXACT training datasets, but 
adopted as sensible values from earlier datasets.

• maxAirwayDensity Dair =  –750 HU
• maxRadiusIncrease = 2
• minimum centricity   cmin = 0.0
• wall density difference   ΔW = 200 HU
• number of rays   N = 42 (antiparallel in 21 different directions)
• sampling step along rays   dr = half of smallest voxel size dimension
• maximum ray length  rmax = 20 mm (assuming that even the trachea is less 

than 40 mm of diameter)

3   Results

An iconing overview over training as well as testing datasets is shown below, as well 
as an example of worst and best case. Numerical results for all test cases computed by 
the EXACT09 organizers (P. Lo, M. de Bruijne, B. van Ginneken, J. Reinhardt) are 
given in Table 1. 

“Training Data”

“Testing Data”

Example CASE38 Example CASE40
“worst case” “best case”
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4  Discussion

Visual appraisal of the segmentations resulting from the algorithm clearly show a 
number of airway segments which can be discerned by the human eye but are not 
segmented by the simple algorithm. Main reasons are image noise, lack of spatial 
resolution (voxel sampling, slice thickness), and non-connected airway segments 
(caused by e.g. bronchiolitis, mucus, disease-caused alterations, anomalies, etc.). 

Nevertheless, the results of the algorithm can serve as an interesting baseline for 
the improvements which can be achieved with more sophisticated approaches, which 
however, usually require many more anatomical models, rules, parameters (with its 
overfitting pitfalls), run-time and program code (with its maintenance costs). The 
charm of the algorithm stems from its simple implementation, primitive data 
structures and quick runtime.
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