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Abstract. Segmentation of the tracheo-bronchial tree of the lung serves
as an important tool for diagnosis and treatment planning of various
pathologies, e.g. by allowing accurate volume measurements or detect-
ing malformations. However, segmenting the airways of the human lung
is notoriously difficult. This is due to the small size of the participat-
ing anatomical structures, which are moreover subject to partial vol-
ume and noise effects. Limited intensity contrasts between air and lung
parenchyma also complicate segmentation. In this paper, we present our
hybrid segmentation method consisting of three main steps, which are
iterated until a satisfactory result is achieved. User interaction is limited
to the specification of a seed point inside the easily detectable trachea.
Further, we discuss the performance of our method within the EXACT09
challenge, where 20 test datasets with varying quality and pathologies
had to be processed.

1 Introduction

Several pathologies can jeopardize a sufficient lung function. Among them are
tumors, pulmonary embolism, collapse of the lungs (atelectasis), pneumonia,
emphysema, asthma, and many more. For a proper diagnosis and treatment, the
respective pathologies need to be identified and in some cases quantified. In the
case of lung-surgery (i.e., for tumor treatment), this information is necessary for
the intervention planning where the anatomical relation of diseased bronchi to
non-diseased areas is required pre-operatively, i.e. to provide a safe distance to
essential structures and to determine resectability.

The standard imaging method to gain anatomical information about lung
parenchyma and airways is the computed tomography (CT). Segmenting e.g.
the tracheo-bronchial tree from these datasets is difficult however. This is due
to the small size of the anatomical structures of interest, the oftentimes low
contrast between air and lung parenchyma, and the partial volume effect, which
decreases this contrast further. Even today, airway segmentation is oftentimes
carried out manually, especially in pathological cases with larger malformations.
In the last years, a great number of (semi-)automatic methods have been pre-
sented in order to facilitate this tedious and time-consuming task (see Section
2). The main intention of the airway segmentation challenge EXACT09 is to give
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the possibility to compare these segmentation methods in a meaningful manner
(by applying them to the same 20 test datasets).

In this paper, we present our semi-automatic segmentation algorithm and dis-
cuss the results achieved within the EXACT09 challenge. The algorithm consists
of three basic steps (3D region-growing, 2D wave propagation, and 2D template
matching), which are iterated until the desired result is achieved. User interac-
tion is limited to the specification of a seed point inside the easily detectable
upper airways and in few cases the decision for a preprocessing step (filtering)4.

In the following parts of this paper, we briefly review related work in the
field of airway segmentation in the next section. Afterwards, we will introduce
the hybrid segmentation method, including all its pipeline stages in Section 3.
After that, we present and discuss the results achieved within the EXACT09
challenge (Section 4). Finally in Section 5, we present conclusions and point to
future research directions.

2 Related Work

Region growing algorithms are a common and frequently-used technique for air-
way segmentation [1–5]. Here, voxel with gray values within a pre-specified in-
terval and connected to a seed point are included into the segmentation. Besides
various advantages (fast, easy to apply), the main drawback is their sensitivity to
leakages into the lung parenchyma. Various methods for leakage-avoidance have
been presented. Filtering the CT dataset as pre-processing step is a straighfor-
ward corrective in this case, although this also implies loss of information on
very small bronchi [2]. Gergel et al. introduced adaptive thresholds for leakage
prevention with their 3D region growing approach. As soon as a leakage is de-
tected, segmentation is continued with more conservative thresholds avoiding
the leakage at that point [1]. Kitasaka et al. controlled leaking and bifurcation
problems by a complex use of local volume of interest templates that limit the
region growing area [3].

Further techniques used for airway segmentation apply mathematical mor-
phologies [2, 6]. The whole CT dataset is searched for candidate airways with
the help of several nonlinear filters. The final segmentation is generated by a
reconstruction step that distinguishes correct from false candidates. Despite of
the fact that no seed point selection is necessary, a further advantage is that air-
ways, which are not directly connected to a seed point can be detected (useful
for pathologic lungs). Main drawback of algorithms using mathematical mor-
phologies is their long runtime.

Combining different methods in an airway segmentation pipeline is another
successful approach. Kiraly et al. use a combination of an adaptive 3D region
growing, 2D mathematical morphology, and an optional 2D median filter to in-
crease the robustness of the segmentation algorithm while improving the quality
of the results [2]. Law and Heng use a combination of region growing and center-
line extraction to enhance the understanding of the 3D structure of the bronchial
4 Other parameters are pre-defined and may be modified by the users.
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tree [4]. Tschirren et al. introduced a segmentation based on fuzzy connectivity,
i.e. voxels are detected as similar to seed voxels by fuzzy logics. Leakages are
prevented by restricting the segmentation to a cylindrical-shaped ROI around
bronchi [7]. Graham et al. deploy airway segmentation by detecting shorter
bronchi sections, which are represented by surface meshes, and connecting them
by interpolation. Strong filtering for the initial segmentation avoids leakages [8].
Finally, another hybrid solution is proposed by Mayer et al. [9], which is the
basis for this contribution. It combines region growing with knowledge-based
techniques and uses fuzzy logic for the segmentation of the bronchus walls.

3 Airway Segmentation Pipeline

The segmentation pipeline consists of three stages (Fig. 1). In the first stage, the
trachea and central bronchi are segmented using standard 3D region growing
methods.

Fig. 1. Segmentation pipeline.

Partial volume effects and limited resolution of the CT scan (which essen-
tially cause this effect) render this method as not satisfactory for segmentations
of further generations of the bronchi, since bordering voxels cannot be sufficiently
differentiated from tissue voxels. Therefore, a 2D wave propagation is initiated
to complete the upper and central branches. Finally, a 2D template matching
procedure is used to segment small lumen, which might be only a single voxel
large. A feedback loop of the whole pipeline repeats the stages until no meaning-
ful additions can be made to the previous segmentation (Fig. 1). Figure 5 shows
the final results of five iterations. However, some datasets might require up to
15 iterations.

3.1 Vicinity-Sensitive 3D Region Growing

The intensity values of CT dataset of the thorax can be divided into three
categories (Fig. 2). Values below -950 Hounsfield units (HU) can be classified
as definitely airway and values above -775 HU as non-airway. Voxels with
values in between (in the isovalue interval from -950 HU to -775 HU) can belong
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Fig. 2. Logarithmic histogram of CT thorax dataset.

to airway or tissue. They are classified as uncertain and need to be investigated
further.

Based on this analysis, the 3D region growing algorithm extracts all voxels
which are definitely airway, starting at the user-defined seed point in the trachea.
To prevent the leaking into the parenchyma of the lungs in smaller airways (i.e.,
in emphysema), we use a masking technique from texture analysis; if the average
gray value of a 3 × 3 × 3 voxel cube centered at the current voxel is within the
save range (below -950 HU), we consider this voxel as being part of the airway.
Otherwise, the respective voxel is not classified as airway in this stage. While this
masking technique prevents leakage, it also impedes the segmentation of smaller
bronchi. However, we usually accomplish the segmentation of the bronchial tree
up to the fifth generation, whereas the bordering voxels are often not included,
since their voxel values belong to the uncertain voxel value interval (see Fig. 3
and Fig. 5a/b). In the second iteration of the segmentation pipeline, the 3D
region growing algorithm runs with the same threshold on the bordering voxels
of the previously selected voxels.

3.2 2D Wave Propagation

Starting from segmented voxels of the previous step, 2D wave propagation tries
to reconstruct bronchi walls within a single CT slice. It starts at each boundary
voxel of the airway voxels from 3D region growing and propagates waves to
detect the walls of the bronchi (Fig. 3b). Voxels at position X in the uncertain
areas are classified by fuzzy logic rules that consider the density value V(X) (in
Hounsfield units) , the largest local N4 neighborhood (in 2D) gradient G(X),
and if voxels in the local N4 neighborhood are already classified as wall pixels
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(a) (b) (c)

Fig. 3. Completion of bronchi walls; (a) shows the result of the 3D region growing
(blue). The green rectangle marks the zoomed area shown in (b). (b) shows the wave
propagation in progress. The cyan boundary voxel is chosen as starting point. The
yellow circles mark the propagated waves and the red points mark the airway candidate
voxels. The black points failed the leaking test, since the number of voxels of that wave
was increasing too fast. Note that the actual waves have a Rhombus-like shape, driven
by the N4-neighborhood. (c) shows the completion of that segmentation by 2D wave
propagation (red). The voxels (within the body) in the iso-range of definitely airway
are marked in blue, of the uncertain range in black/grey, and of the no airway range
in white.

(no airway) in a previous wave W(X):

fwave(X) =cv ∗ V (X) + cg ∗ G(X) + cw ∗ W (X), (1)
with cv = 1, cg = 1, cw = 0.75.

where V(X) and G(X) are mapped into the closed interval [1.0, 0.0], and W(X)
is either 1 – if there is a classified wall pixel in the N4 neighborhood — or 0 –
otherwise. Essentially, if fwave(X) ≥ cwall, the voxel is classified as wall5.

Critical to the wave propagation is the evaluation of the classified airway
areas, if they really belong to the airways. To achieve this goal, the additional
voxels segmented by each wave are monitored by a protocol that verifies the
shape and size of each bronchus candidate, using a set of default parameters
(Fig. 3b). As metric, we count the number of voxels selected by the n waves
propagating within a plane (BPSn for BronchusPlaneSize), and the wave diam-
eter (WDn) of the current wave n as the number of selected voxels of wave n.
Furthermore, we define the average number of voxels of the first n waves (AWDn

for Average Wave Diameter).
Segments of the tracheo-bronchial tree are identified by sequences of as air-

way classified voxels in a wave. Figure 3b shows two sequences marked by the
red points, thus depicting a bifurcation. The shape rules essentially assume that
no wave detects segment splits in more than two subsequent segments at a bifur-
cation. A third segment (of not yet selected voxels) in one 2D wave propagation
5 Typically, cwall = 1.74.
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test (in one slice) is henceforth considered as leakage into the lungs and is consid-
ered invalid. At each bifurcation, the segment identification process starts again
recursively.

As closer examination of previously examined CT thorax datasets showed,
two very close bifurcations were never located close enough to be detected as a
third segment by the 2D wave propagation, thus they were not falsely identified
as leakage.

WDn > dmax (2)
WDn/WDn−1 > dWDratio

(3)
BPSn > dsize (4)

AWDn − AWDn−1 > dAWDcurrent
(5)

AWDmax − AWDmin > dAWDlongterm
(6)

The size rules limit the growing of the wave propagation6. If the diameter of
a bronchi candidate exceeds a certain size (Equation 2), or if the wave diameter
is increasing too fast from the previous wave (Equation 3, see also black points
in Fig. 3b), the respective segment recursion is terminated and the results are
considered as leakages (invalid). Furthermore, if candidates grow spontaneously
(while shrinking before) or the overall in plane voxel size BPSn of the candidate
becomes unrealistically large (Equation 4), the recursion is again terminated and
the results are set to leakages (invalid). The last two rules (Eqn. 5 and 6) test
the current and long-term growth of the wave front. Specifically, they test if the
segments are shrinking (as assumed) or growing. The protocol starts testing after
the first three waves, since they frequently show an unstable behavior. During
the wave propagation, all invalid results are removed from the segmentation.
However, initial correct results (i.e., for the first p waves) are preserved.

To follow a bronchus through several slices, virtual waves are propagated in
neighboring slices. If one of these virtual waves is similar to the shape and size
of the wave propagation in the current slice, another recursive wave propagation
in the neighboring slice is initiated. Specifically, the recursive testing of waves in
neighboring slice is initiated only for no-branching segments that have classified
wall elements from 2D wave propagation. Furthermore, these wall elements may
only differ by one voxel to the wall elements of the new neighboring slice segment.

Similar to the first step of the pipeline, 2D wave propagation uses almost the
same parameters in the subsequent iteration; only the peripheral bronchi diam-
eter is reduced since the lower airways (higher generations) only grow smaller.

3.3 2D Template Matching

Without the used careful validity testing, the previous two stages would leak
into the surrounding area, if the airways become too small to be picked up,

6 We use dmax = 6.1mm, dWDratio
= 1.75, dsize = 500mm2,

dAWDcurrent = 1.13, dAWDlongterm
= 3.0.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Template matching: (a) shows a peripheral airway. 2D seeding is started on
pixels of the category uncertain. The result is marked blue (b). From there the seed-
ing area templates (white polygon with black dot pattern) are formed and tested on
different locations around the seeding. The seeding is repeated on the category uncer-
tain and template (marked by a pattern, (c) to (e)). (f) shows the best result after the
classification.

in particular in areas where the airways might have the size of only one voxel.
To select these voxels, but still prevent the leaking, we apply a 2D template
matching technique that evaluates the candidate area below templates with the
isovalue category uncertain (between -950 HU and -775 HU). This stage is
organized in two steps; the first step establishes templates that are used in the
second step to evaluate the local voxel neighborhood.

First, 2D template matching applies 2D region growing starting from the
boundary voxels of the previous segmentations (Fig. 4). The thresholds are varied
– from the upper threshold of the uncertain isovalue interval (-775 HU) – until
the number of selected voxels is below the critical limit (i.e., 35 voxels), since it
can be assumed that they did not leak out. Based on this selected voxel area,
circular templates of varying sizes are generated.

In the second step, we apply a 2D region growing and use the templates to
differentiate the thresholds; below the template, we are using the upper uncer-
tain threshold (-775 HU), while we are using the original template threshold
outside of the template. By moving the templates over the local area, we gen-
erate various segmentation candidates (see Fig. 4b-e) which are again evaluated
by a set of fuzzy rules. This time, we consider the average density value V̄ (X) of
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the template area and the average (gradient range is clamped in order to reduce
data artifacts) gradient G(X) to the surrounding voxels in the N8 neighborhood
(within a single slice). The best possible result is then selected and added to the
segmentation (Fig. 4 and Fig. 5d).

ftemplate(X) =cave ∗ V̄ (X) + cgrad ∗ G(X), (7)
with cave = 0.25 and cgrad = 0.75.

Here, V̄ (X) is mapped from [-1000,-775] to [0.0,1.0], and G(X) is mapped into
the range [0.0, 1.0]. Illustratively, this means that accepted candidates have a
low average density value and a high boundary contrast. The candidate with
the largest ftemplate ≥ 0.7 (Eqn. 7) is accepted as airway (Fig. 4f and Fig. 5d).
However, if the size of the template controlled area is larger than twice as much
as for the previous slice, a leak-out is assumed, thus the area of the current slice
is assumed invalid.

In the subsequent iterations, voxels which have already been unsuccessfully
tested for inclusion, are excluded from template matching. This is mainly to
save time – 2D template matching is the single most time consuming stage of
the segmentation pipeline – and they usually do not contribute in later iterations.

4 Application to EXACT09 datasets

When applying our semi-automatic segmentation method, user interaction is
required for setting the seed point in the trachea. All parameters (thresholds,
propagation diameter, etc.) are pre-specified. These default parameters (see Sec-
tion 3), which were fixed based on previously segmented CT datasets and vali-
dated with the provided training data, also worked very well with the majority
of the test datasets. An optimization of the parameters for individual datasets
is possible, but improves the segmentation results only slightly compared to the
standard setting. We consider this as stability feature of our approach.

In several cases, we faced the problem that due to noise effects (especially in
low-dose CT datasets), the initial vicinity-sensitive 3D region-growing showed
no satisfying results. A slight adjustment of the segmentation thresholds might
solve this problem (as e.g. in case 26). However, these thresholds are based on
expert knowledge, so increasing these parameters too much easily leads to false
positives, when uncertain or tissue voxels are classified as airway. Thus, in these
cases a preprocessing step, i.e. the application of a gentle Gaussian filter (kernel
size of 3 voxels), was included into the pipeline. Although filtering also implicates
a loss of information concerning the lower and smaller bronchi, it turns out to
be the better choice than adjusting thresholds, risking leakages, and thereby
a higher false positives rate. Altogether, this pre-processing step allowed fairly
good segmentations compared to the problems that arose before.

The segmentation results were evaluated according to two main categories:
the overall segmentation result and the leakage robustness (see Table 1). Con-
cerning the segmentation sensitivity, our method detected 41.7% of the branches

-246- EXACT'09 



Table 1. Evaluation measures for the twenty cases in the test set.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 64 32.2 35.5 32.1 0 0.0 0.00
CASE22 144 37.2 98.9 29.9 0 0.0 0.00
CASE23 158 55.6 112.3 43.1 5 89.8 0.70
CASE24 112 60.2 83.4 51.3 2 8.2 0.04
CASE25 151 64.5 110.5 43.8 4 50.7 0.21
CASE26 54 67.5 38.4 58.4 3 297.1 4.85
CASE27 52 51.5 35.7 44.0 0 0.0 0.00
CASE28 89 72.4 63.2 57.6 0 0.0 0.00
CASE29 58 31.5 36.1 26.2 0 0.0 0.00
CASE30 98 50.3 67.6 44.2 1 1.8 0.03
CASE31 61 28.5 38.6 22.0 1 6.7 0.08
CASE32 64 27.5 46.8 21.5 2 108.6 0.93
CASE33 55 32.7 38.4 26.1 0 0.0 0.00
CASE34 139 30.3 84.8 23.7 4 37.6 0.20
CASE35 180 52.3 117.2 37.9 13 155.4 0.93
CASE36 69 19.0 60.8 14.7 0 0.0 0.00
CASE37 53 28.6 43.0 24.2 0 0.0 0.00
CASE38 40 40.8 30.6 46.1 0 0.0 0.00
CASE39 101 19.4 78.9 19.3 0 0.0 0.00
CASE40 127 32.6 93.4 24.1 3 28.6 0.20

Mean 93.5 41.7 65.7 34.5 1.9 39.2 0.41
Std. dev. 43.0 16.2 29.6 13.2 3.1 74.8 1.09

Min 40 19.0 30.6 14.7 0 0.0 0.00
1st quartile 55 28.6 38.4 23.7 0 0.0 0.00
Median 79 35.0 62.0 31.0 1 0.9 0.01
3rd quartile 144 60.2 98.9 46.1 4 89.8 0.70
Max 180 72.4 117.2 58.4 13 297.1 4.85
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Fig. 5. Three segmentation stages: (a) region growing, (b) wave propagation, (c) tem-
plate matching, (d) final segmentation result

and 34.5% of the tree length (length of the centerlines of detected branches). Both
compared to the gold standard, which is the airway segmentation result carried
out manually by radiologists and other medical experts. With that, our methods
belongs to the lower midrange, when compared to all other 14 algorithms, and
ranks second in the group of semi-automatic methods. A problem reducing the
sensitivity of our method, were larger gray values occuring in the bronchi due
to pathologies (e.g. caused by secretion). These voxel are then classified as lung
parenchyma and interrupt the segmentation (see Figure 6).

The strength of our algorithm, however, is leakage-control. Only 0.41% of
the detected branches were false positives (in Table 1 referred to as false positive
rate) and with that result we achieved rank three in total. The positive pre-
dictive value, which measures the accuracy that existing branches are detected
(correctly found bronchi branches / (correctly found bronchi branches + found
false positive bronchi branches)), is 98.0% and in 50% of our segmentations, no
leakage occured at all.

In the segmentation of airways in CT datasets, a satisfying trade-off between
detecting a maximal number of bronchi and avoiding leakages has to be found.
The evaluation within the EXACT09 challenge shows, that our segmentation
method belongs to the more conservative techniques, where leakage-avoidance
has a very high priority.

As noted before, usually five to seven iterations are sufficient for a segmen-
tation of the tracheo-bronchial tree. Overall, this corresponds to a typical seg-
mentation duration between 10 and 30 seconds on a PC with a Intel Core 2 Duo
processor, each core running at 2.4 GHz.

5 Conclusions and Future Work

In this paper, we presented a semi-automatic segmentation method with a pipeline
of three main steps, which is iteratively applied. These main steps are 3D region-
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(a) (b)

Fig. 6. Areas with higher gray values (marked by circles) inside the bronchi interrupt
the segmentation. Examples from Case36 (a) and Case39 (b).

growing, 2D wave propagation, and 2D template matching, all of which are im-
plemented with special focus on leakage-prevention (see Section 3). The results
within the EXACT09 airway segmentation challenge justify this effort with a
very low false positive rate and a small leakage volume. The drawback of the
powerful leakage-control is, however, the reduced sensitivity concerning the over-
all segmentation performance.

A straightforward advancement of our method is stepping from 2D to 3D for
the wave propagation and the template matching. At present, these two pipeline
stages work on individual slice images. Thus, detecting bronchi located orthogo-
nal to these slices is usually not possible within the same iteration. It turned out,
that the subsequent vicinity-sensitive 3D region growing – followed by the other
2D pipeline stages – is able to compensate for this effect in many cases. Hence,
implementing 3D wave propagation and 3D template matching will primarily
show an improvement concerning runtime (by achieving the same result in fewer
iterations), but beyond that we also except some better identification of smaller
bronchi.
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