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ABSTRACT

This paper empirically compares three algorithms for segment-
ing simple, noisy images: Simulated Annealing (SA), Iterated Condi-
tional Modes (ICM), and Maximizer of the Posterior Marginals
(MPM). All use Markov random field models to include prior con-
textual information. The comparison is based on artificial binary
images which are degraded by Gaussian noise. Robustness is tested
with correlated noise and when the object and background are tex-
tured. The ICM algorithm is evaluated when the degradation and
model parameters must be estimated, both in supervised and unsu-
pervised modes and on two real images. The results are assessed by
visual inspection and through a numerical criterion. We conclude
that contextual information via Markov random field models
improves segmentation when the number of categories and the
degradation model are known and that parameters can be effectively
estimated. None of the three algorithms is consistently best but the
ICM algorithm is the most robust. We also demonstrate that a-
posteriori energy is not always minimized at the "best” segmenta-
tion.

1. Introduction

We view image segmentation as the problem of recovering a
"true" image consisting of a few homogeneous regions from a noisy
image by labeling individual pixels according to region type. This
paper compares a class of image segmentation algorithms that use
Markov Random Fields (MRF) as models of context in the true
image. Context is important in image segmentation because contigu-
ous pixels are likely to belong to the same region. Markov random
fields are appropriate prior contextual models because they can
specify the local properties of image regions. The MRF model of
prior information need not be an accurate model of the true image
itself. An MRF model is seen here as a convenient means for intro-
ducing context, or dependence among neighboring pixels.

This pixel-labeling problem has been called image restoration
[2, 8] as well as image segmentation [5, 6]. The type of labels used
distinguishes among problems of restoration, segmentation, and edge
detection. The set of pixel labels can be unordered, as when seg-
menting Landsat satellite images according to land use category, or
ordered, as when recovering actual gray level intensities. In image
restoration, the labels are from the set of gray values {0, 1, ..., 255}.
In image segmentation, the labels are from (1, 2, ..., C}, where C is
the number of categorics. Edge detection can be viewed as a special
case of pixel labeling with C=2 (edge and no edge). Haralick and
Shapiro [9] give a survey of segmentation techniques. Relaxation
labeling is similar to MRF model-based segmentation and iteratively
changes pixel labels to optimize a probabilistic index. Relaxation
labeling does not mathematically guarantee a unique optimal solu-
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tion but seeks a practical suboptimal solution.

Comparing image segmentation algorithms is not an easy task.
First comes the problem of specifying the segmentation algorithm.
Several variations of MRF-based segmentation algorithms have been
proposed in the literature (2, 4, 5, 6, 8, 11, 13, 12]. They differ in the
details of the type of prior model, in the model for corrupting the
true image by noise, in the type of optimization algorithm, and in the
details of the algorithms themselves. Choices of models for the
image and the noise are often dictated by the problem at hand.
Reports of MRF model-based segmentation algorithms in the litera-
ture exhibit at least one of the following drawbacks making accurate
reproduction of results impossible: (i) Mathematical formulas are not
stated explicitly; (ii) Algorithms are not clearly specified; (iii)
Parameters are not given; (iv) Details of test images, such as actual
gray levels, are not provided. We try to clarify these details in our
experiments and make a fair and unbiased assessment of relative
capability and utility. The goal is a practical comparison of segmen-
tation algorithms, not a study of their mathematical properties. We
have limited our comparison to three methods which have appeared
in the current literature: Simulated Annealing (SA), Iterated Condi-
tional Modes (ICM), and Maximizer of the Posterior Marginals
(MPM).

The second problem in comparing segmentation algorithms is
the difficulty in choosing a criterion for assessing performance. The
most common criterion is the percentage of pixels misclassified. The
obvious difficulty with this criterion is that it ignores the capability
of an algorithm to recover important details, such as straight lines.
This criterion also depends on the number of true segments in the
underlying image. Our comparison is based on several synthetic
images which cannot be segmented easily by heuristic algorithms
and on two real images. We rely on a visual comparison of the true
and segmented image to judge the performance of the algorithms and
report a simple numerical index of performance. The parameters of
the models are assumed known in our initial experiments. We
extend our study of the ICM algorithmi to situations in which param-
eters are estimated, with and without training samples.

2. Background

This section briefly defines our notation. Complete definitions
of the underlying concepts are given elsewhere [2, 8, 6, 7]. An
(intensity) image specifies the gray levels for all pixels in an M>XV
lattice. The gray levels belong to the set A = {0,1,..,G-1}. The
"true" or "perfect” image is represented by the vector random vari-
able X = {X,, X5, ..., Xy} which is modeled by a (discrete) Gibbs
random field. The range set for each X, is the set of labels {1,...,C}.
The gray level at site ¢ is denoted by p, which can be any value in A.
Only two gray levels have non-zero probability in binary images. It
is often assumed that the gray levels associated with all pixels having
identical labels are the same.



Figure 1 demonstrates the labeling of pixels and notation used
in this paper. For example, Figure 1(a) labels first-order spatial
neighbors of site ¢ as "1", second-order neighbors as "2", and so
forth to fifth order. A linear ordering of sites from 1 to MN is
assumed in vectors such as X. The relative ordering in Figure 1(b)
provides a convenient labeling for the neighbors of each pixel.
Periodic boundaries are assumed so every pixel has the same number
of spatial neighbors.
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Figure 1. Definitions of Neighborhoods and Relative Neighborhoods

The image observed is denoted by the MN-vector random vari-
able Y and is obtained by adding a noise process to the perfect
image. We assume i.i.d. Gaussian noise. This is the usual degrada-
tion model studied in the literature [2, 6, 11]. Therefore, the density
for Y, given the perfect image, is

MN
f@IX=x)= 170,15

Note that f(.!x,) is the conditional density function for Y,, the gray
level at pixel ¢, given the true label x, at pixel &. We take f,(y, Ix,) to
be the Gaussian density function with mean p,, and variance o2. The
variance o2 depends on the additive noise and the gray level varia-
tion associated with each image label.

Contextual information enters the image segmentation problem
through a Markov random field (MRF) model of the statistical
dependence among the labels on neighboring pixels in X which is
equivalent to a Gibbs process [1]. The (a-priori) probability function
for X under a Gibbs random field with respect to a neighborhood sys-
tem of cliques is given below [1, 6, 8]. Notation P refers to the pro-
bability mass function for discrete random variables, such as X, and f
refers to the density function for continuous random variables, such
asy.

P(X=x) = eU®;zZ,

where Z is the partition function or the sum of the numerator over all
possible labelings and U () is the energy function. This paper is lim-
ited to pairwise interaction processes in which spatial neighbors
occur only in pairs.

MN ¢
Ux)= Z E 6 Xy Xe:40)],

t=lr=1

()

where J (a,b) =-1 if a=b, 0 if a#b; ¢ = 2 for a first-order model and ¢
= 4 for a second-order model; {6,,...,6,} are the clique parameters.
We emphasize that the random field model is used only to insert
context into the problem and is not expected to be an accurate model
of the true image. Techniques for fitting models to images are dis-
cussed elsewhere [3].

Under our assumptions, the a-posteriori probability mass func-
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tion for the pixel labels X, given the observed image Y =y also has
the form of a Gibbs random field with respect to a neighborhood sys-
tem of cliques.

(0]

where Z; is a normalizing constant, and the corresponding energy
function is

PX=xIY=y)=e YWz,
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The local properties of an MRF can be derived from the Gibbs
random field. Let X;, be a (vector) random variable representing the
gray levels of neighbors of pixel ¢, denoted by {x,.,,, x,..} for r from
1 to ¢. The conditional probability of X, can be written as follows [1].

PX,=x1X =%, Y =y) = & %07,

where Z, is a normalizing constant, and

(Ve )2 G
Uit ) = IO+ 2 & EO G 5+ i 50O
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The segmentation problem can now be stated as the problem of
observing vector y and estimating the labels in the perfect image.
The MAP (Maximum A-Posteriori) estimate is the vector X which
maximizes P (X =x|Y =y) with respect to x. Maximizing a function
of MN variables is a formidable task. Section 3 defines three algo-
rithms for approximating the MAP estimate. Contextual information
is represented by the rightmost sums in Eq. (3) and (4). If these
sums were removed, scgmentation algorithms would assign labels
independently to each pixel.

3. Pixel Labeling Algorithms

This section defines the MRF-based segmentation algorithms
compared in this paper. These iterative algorithms attempt to optim-
ize a statistical criterion by approximating the MAP estimate.

3.1. Simulated Annealing (SA)

Geman and Geman [8] proposed an algorithm based on simu-
lated annealing to find the MAP estimate of the true image, which
minimizes the energy function U (xly) in Eq. (3) over all CM¥ possi-
ble labelings x. An exhaustive search for a global optimum creates
an impossible computational burden because the labels for all pixels
must be estimated simultaneously. Although simulated annealing is
theoretically guaranteed to find a globally optimal labeling, it can
fail in actual problems because compromises are needed to overcome
the computational burden. Simulated annealing is in the class of sto-
chastic relaxation algorithms and is based on the classical Metropolis
(1953) method of simulating systems containing large numbers of
particles. Van Laarhoven and Aarts [14] provide a complete back-
ground and a summary of all aspects of simulated annealing algo-
rithms. The algorithm given below was used in this paper.

Algorithm for MAP Estimation by Simulated Annealing
(1) Choose an initial temperature T.
(2) Initialize X by maximizing f,(y, | x,) for each pixel .
(This is the maximum-likelihood estimate of pixel label.,)
(3) Perturb X into Z. Let
A=U@Zly) - U&ly)

If A > 0 then replace X by z;

else replace X by Z with probability ¢2/7.
(4) Repeat (3) N, times.
(5) Replace T by ¢(T) where ¢ is a monotonically decreasing function.
(6) Repeat (3)-(5) K may times.



The a-posteriori distribution of X, given Y =y, must be a Gibbs
random field for this algorithm to work. The energy function U(. | y)
is defined in Eq. (3). It is important to realize that the partition func-
tion Z, need not be computed or estimated to compute A.

The choice of function ¢ that defines the cooling schedule, the
initial temperature T, the number of inner 100ps N;,,,,, the number of
outer 100ps K., and the perturbation method must all be chosen
experimentally to simulate the annealing process. Changing tem-

perature slowly permits the estimator to escape local maxima and -

seck a global maximum. To perturb % into Z, a single pixel was
selected and a new label was randomly assigned.

3.2 Iterated Conditional Modes (ICM).

Besag [2] proposed the ICM method as a computationally
feasible alternative to MAP estimation. One difficulty with MRF a-
priori models is their tendency to exhibit a phenomenon known as
phase transition, in which realizations of the process are "uni-color”
images {10]. The ICM segmentation algorithm was specifically
designed to overcome this tendency [2].

The key to the ICM method is the following equation of pro-
portionality for the probability of the label at pixel ¢, given the
observed image y and the current estimates x;, of the labels of all
pixels in the neighborhood of pixel . The notation xg), refers to the
labels of all pixels in the image, excluding the label at site ¢ itself.

PX,=x 1y, Xs1=Xs11) o [0, | x)P X=x, | Xy = X3) )

Maximizing the conditional probability in Eq. (5) is equivalent
to minimizing the energy function in Eq. (4). The ICM algorithm is
described below. The MN-vector y is given and an MN-vector of
estimated pixel labels x is computed.

Algorithm for Estimating Pixel Labels by ICM Method
(1) Initialize X by maximizing f,(y, | x,) for each pixel .
(2) For t from 1 to MN

Update %, to the value of x, that maximizes U,(x,,Xy,,).
(3) Repeat (2) Ny, times.

Experience has shown that 5 or 6 raster scans of an image are
sufficient for convergence. The computation is a few orders of mag-
nitude faster than the simulated annealing approach, and, as shown in
Section 4, produces reasonable results.

The most difficult part of applying MRF-based segmentation
algorithms is choosing the prior model. As an illustration, Besag [2]
suggests using a simple, one-parameter pairwise-interaction model,
with all the 0's in Eq. (4) equal to B. A second-order neighborhood
is used so the label of a pixel is influenced by the labels of its eight
nearest neighboring pixels. The larger B, the greater the influence of
neighboring pixels. Besag [2] allows B to vary with the iteration. If
one has detailed prior information and can choose an accurate prior
model for the true labeling, the ICM method should work even better
than with this one-parameter model. However, the problem of
translating statements about the true labels and region shapes and
sizes into parameter values for a MRF has not been solved.

3.3 Maximizer of Posterior Marginals (MPM).

Marroquin et al. [13] used an MRF model for the true labels but
avoided the computational difficulties inherent in MAP estimation
by proposing to minimize segmentation error, €. Let 8(z)=1ifz=0
and O otherwise and let x" be the perfect image. A labeling x is
sought which minimizes

MN . o~
[1-8(x; - %)) (6)

t=1

oo L
MN
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which is the number of mistakes in the labeling x.

The MPM approach requires that the a-posteriori distribution
of X, given noisy image y, be an MRF. The labeling that minimizes
segmentation error can be shown to maximize the marginal a-
posteriori distribution so the label %, at pixel ¢ is taken to be the one
that satisfies:

P(X,=% 1Y=y) 2 P(X,=x 1 Y=y) forallx,

Besag [2] called the approach to maximizing this marginal con-
ditional probability the MMP (Maximum Marginal Probability)
method and viewed it as an approximation to MAP estimation. The
point of departure of MPM is the manner in which this marginal con-
ditional distribution is computed. Marroquin et al. [13] propose to
simulate the MRF representing the a-posteriori distribution of X,
given Y=y by a sampling algorithm such as the Gibbs sampler [8]
which simulates a Markov chain over the states representing all pos-
sible labelings. Once this Markov chain has reached steady state, the
marginal a-posteriori probability is estimated by counting the
number of times each label is achieved at each pixel in a series of
configurations. Specifically, if x{? is the label achieved at iteration i
of the simulation, the a-posteriori marginal distribution of X, is
approximated as follows.

~ n
Px=g1¥=y) = L T 8P -g) @
n—k ;5
Parameter k is the number of iterations needed for the Markov chain
to reach steady state and » is chosen large enough for accurate esti-
mation at reasonable computational cost. Both k and » are chosen
heuristically. This approach is similar to simulated annealing at a
single temperature. The algorithm is summarized below.

Algorithm for Estimating Pixel Labels by MPM Method
(1) Initialize X by maximizing f,(y, | x,) for each pixel z.
(2) For site s from 1 to MN
(a) Choose ge A at l%n&om al:dyl_et z,)= g Letz, =x, forall res.
= mi =7 = !
(b) Letp n:m II.P(X=;‘ Y=y) }
(c) Replace X by z with probability p. ) A
(3) Repeat (2) n times, saving realizations X tox .
(4) Form P(X, = g | Y =) from Eq. (7) for all g.
(5) For site t from 1 to MN
Choose label estimate X, so that, for all labels g,

PX,=%1Y=y) 2 PX,=g | Y=Y)

In addition to choosing the parameters of the prior distribution
and the parameters relating observations to the label process, one
must select the "magic" numbers k and n. The MPM algorithm
requires more computation than the ICM algorithm, but far less com-
putation than simulated annealing.

3.4. Other MRF Model-Based Pixel Labeling Algorithms

The SA, ICM, and MPM algorithms are representative of the
class of MRF-based segmentation algorithms. Several other algo-
rithms related to these three have been proposed. Derin and Elliott
[6] expressed the a-posteriori distribution of X, given Y as a recursive
function and estimated an optimal labeling by dynamic program-
ming. The heuristic used in the procedure does not guarantee either a
global or a local optimum. Cohen and Cooper [5] assumed an auto-
binomial [1] prior model for X and an auto-normal [1] distribution
for the conditional density of Y given X. They proposed a hierarchi-
cal algorithm for labeling pixels. The algorithms in [5] are essen-
tially ICM-based algorithms. Lakshmanan and Derin [11] simultane-
ously estimated parameters for the MRF prior distribution and seg-



mented the image. It is clear that a variety of MRF model-based
approaches are possible and that they differ in the type of informa-
tion that must be provided to the algorithm and in computational
details.

4. Experiments

Our experiments are based on 64x64 perfect images containing
two gray levels (100 and 160) representing "object” and "back-
ground" and on two gray-level real images captured by a CCD cam-
era. The two perfect images consist of two regions; the first is a
checkerboard image, and the second image consists of a numeral that
captures 11% of the pixels. We assume an isotropic second-order
Ising model [10] for the prior distribution of X so the parameters in
Eq. (1) are ¢ = 4 and 6, =0, =0, =06, =0. We have considered two
values of f, 0.4 or 1.5, which are kept constant through each segmen-
tation. A realization of an MRF with B=1.5 tends to have very unbal-
anced numbers of labels because of phase transition [10]. The values
of other parameters are given below. In Algorithm SA, K., = 300,
Ninner = 200, T, = 2, and Ty, = §(T) =T /In(1+k) for k22. Algorithm
ICM is stopped after 6 complete scans. The magic numbers for
MPM are k =200 and » = 300.

In addition to judging the results of pixel labeling by visual
inspection, we recorded the energy function of the a-posteriori distri-
bution evaluated at the estimated labeling, X, U(Xly). The smaller
this energy, the better X approximates the MAP estimate. However,
energy is not always minimized at the visually optimal labeling.

Section 4.1 describes experiments when the MRF model
parameters and the parameters controlling the degradation in the
observed image are all known. Since the ICM algorithm required
least computation and generally provides reasonable segmentations,
we extended our study of the ICM algorithm to situations in which
the parameters were learned in Section 4.2 and to real images in Sec-
tion 4.3.

4.1. Synthetic Images with Known Parameters

Three experiments were performed to compare the three seg-
mentation algorithms. Experiment 1 creates images that follow the
noise model described in Section 2. Experiment 2 uses correlated
noise and Experiment 3 represents each region by a texture. The
assumptions of Section 2, under which the segmentation algorithms
are derived, do not hold in the latter two experiments. Thus, we are
viewing the algorithms as general purpose segmentation algorithms
and testing their robustness in Experiments 2 and 3.

Experiment-1 Binary Images With i.i.d. Gaussian Noise

The images segmented in this experiment are obtained by
adding a sample of a Gaussian random variable (mean 0, variance
3600) independently to each pixel in a binary image having gray lev-
els 100 and 160 (SNR = 1). This implies that in Eqgs. (3) and (4), x,
e {1,2},; = 100, 4, = 160, o, = 6, = 60. Figures 2 and 3 each show
a perfect image, the noisy, or observed image, the MLE image
(obtained by labeling each pixel independently) that serves as the
starting point for all algorithms, and the results of the three segmen-
tation algorithms for two values of B. The noise has a standard devi-
ation equal to the difference of the gray levels in the perfect image so
the histograms for the noisy images are unimodal. Thus, simple
thresholding methods are of no value. Figures 2(c) and 3(c) demon-
strate that MLE estimates do not segment accurately.

Table 1 summarizes our visual comparison of the segmenta-
tions in Figures 2 and 3. Symbol "=" means "judged similar’. We
emphasize that these assessments are inherently subjective. Entries
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Figure 2. Segmentation results with i.i.d. noise

(a) perfect image (b) noisy image (c) MLE (d) SA (B = 0.4) (¢) ICM
(B =04) () MPM (B = 04) (g) SA (B = 1.5) (h) ICM (B = 1.5) (D)
MPM (B = 1.5)
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Figure 3. Segmentation results with i.i.d. noise
(a) perfect image (b) noisy image (c) MLE (d) SA B=04) () ICM

(B = 04) (5 MPM (B = 04) (2) SA (B = 1.5) (h) ICM (8 = 1.5) i
MPM (8= 1.5) ® SAB=15®ICM B =15) ()

@) ®)

Table 1. Summary of Segmentation Comparisons by Visual Inspection

Experiment || Figure(s) B Assessment
1 23 04 | ICM=SA=MPM
23 1.5 ICM
2 4 04 | ICM=SA=MPM
4 1.5 ICM
3 5 L5 ICM
5 0.4 None

"ICM" in Table 1 indicate that only the ICM method produced a rea-
sonable segmentation. Table 2 shows energies of a-posteriori distri-
butions (see Eq. (3)) along with the energy function evaluated for the
perfect image. Note that the energy function is not a reliable indica-



tor of segmentation quality. For example the SA algorithm, when
B = 1.5, produced the smallest energy for the checkerboard in Figure
2(g), but the segmentation was the worst visually. Curiously, all
three algorithms terminated with images having lower energy than
the energy of the perfect image when B = 1.5 for the checkerboard.

Table 2. Values of Energy function for Segmentations

Experiment || Figure | B SA ICM | MPM | Perfect
1 2 15 | 4135 | -3614 | -3864 | -3531

3 15 | -5503 | 4979 | -5432 | 4877

2 4 04 | 12861 | 12907 | 12965 | 13066

4 15 | 4332 | -3440 | -3785 | -3336

3 5 15| <7511 | -7023 | -7453 | -7081

Experiment-2_Binary Images With Correlated Noise

Experiment 1 is generalized by changing the additive noise
process to a first-order Gaussian Markov Random Field [1] with
mean O, variance 3600, and parameters 9, = 0, =0.2, This imposes a
correlation between the noise added to neighboring pixels, indepen-
dent of the true image. As in Experiment 1, the gray level histo-
grams of the noisy images are unimodal with strong clipping at lev-
els 0 and 255 and are useless for segmentation.

Figure 4 exhibits the results of segmenting the noisy checker-
board. The minimum energy solution was not visually the best in all
situations in this experiment. Comparing the results of Experiments
1 and 2 suggests that segmentations under the correct noise model
(Experiment 1) are better than results under an incorrect model.
However, the algorithms are reasonably robust to the level of corre-
lated noise used in this experiment.

@
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Figure 4. Segmentation results with
(a) perfect image (b) noisy image ©)
(B =04) (9 MPM (B =04) ®) SA (B
MPM (B = 1.5)

Experiment-3_Textured Regions

Experiment 3 violates all the assumptions under which the
three algorithms were derived and presents a severe test of robust-
ness. Two 64x64 textured images were generated from a first-order
Gaussian Markov Random Field with parameters {n, 6,6, 6;} of
{160, 20, 0.4, -0.08} and {160, 40, -0.08, 0.4}. The two textures
have the same mean gray levels but differ in variance and direc-
tionality. Pixels at level 100 in the perfect image were assigned gray
levels from one process and pixels at level 160, from the other. Gray

@®

correlated noise
MLE (d) SA (B =0.4) (¢) ICM
=1.5) ) ICM B = 1.5) ()
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level histograms were unimodal with sharp peaks at 160 and
significant clipping at level 255 and provide no information for seg-
mentation.

Figure 5 shows segmentations of the numeral image. The seg-
mentation algorithms do not incorporate the values of parameters 6;
and @, of the Gaussian Markov random fields which were used to
generate the textured regions. Only the ICM algorithm performs rea-
sonably under the severe conditions of this experiment.

(®)

&) @)

Figure 5. Segmentation results with textured regions

(a) perfect image (b) noisy image (c) MLE (d) SA (B=04) () ICM
B=04)OMPMPB=04)SAB=15MICMB=15®
MPM (B = 1.5)

In summary, none of the algorithms performed consistently
best; ICM proved to be the most robust algorithm. A large value of B
appears to be desirable with ICM. In a typical experiment on a
64x64 image, the computation time for ICM is about 6 seconds,
while MPM needs 3.7 minutes and SA demands several hours on a
Sun 4/280 computer. Thus, ICM has clear computational advan-
tages.

4.2. Synthetic Images with Parameters Estimated

The results of Experiments 1-3 suggest that the ICM algorithm
with B of 1.5 is the best tradeoff between performance and computa-
tional speed. However, all parameters of the noise process were
assumed known in Experiment 1, which is not realistic in applica-
tions. This section tests the performance of ICM when the parame-
ters are estimated by supervised and unsupervised procedures. Noisy
images are generated as in Experiment 1, by adding i.i.d. Gaussian
noise with mean 0 and variance 3600 to the two perfect images. The
objective is to determine the effect of using estimated parameters on
the performance of the ICM segmentation algorithm.

Experiment-4_Labeled Training Samples

The estimation problem is to learn the means {my, nz}, and the
variances {o%, 63} of two normal distributions when the true means
are {100, 160} and the true variance for both distributions is 3600.
We randomly selected 100 pixels from each region, observed the
noisy gray levels at these pixels, computed the maximum likelihood
estimates for the means and variances, and used the estimates in the
ICM segmentation algorithm with B of 1.5. This simulates the situa-
tion when an observer can correctly classify about 5% of the pixels
by eye. Rather than repeating this process with both images, we did
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Figure 6. Segmentation results of ICM using supervised learning
for images in Figures 2-3(b)

it once and used the same estimates for both noisy images, The
estimated parameters are {w;, u;} = {104, 158} and {0}, 03} =
{2964, 2838}. The segmentations are shown in Figure 6. A visual
comparison with the results of Experiment 1 (Figures 2(h)-3(h)) indi-
cates that ICM performs as well with estimated parameters as with
known parameters when the noise model is known.

Experiment-5 Unlabeled Training Samples

The assumed knowledge for parameter estimation here is more
realistic than in Experiment 4 since no classified training pixels are
available. The problem of estimating parameters can be treated as
the classical problem of resolving a Gaussian mixture. As in Experi-
ment 4, the parameters to be estimated are the means and the vari-
ances of the two regions. In this experiment, however, we also esti-
mate the parameter B of the MRF model. We choose to reformulate
the ICM algorithm to incorporate unsupervised estimates as defined
in the following algorithm.

Modified ICM Algorithm with Unsupervised Estimation

(1) Obtain an initial segmentation. Initialize .

(2) Obtain parameter estimates I, |, Gy, G by maximum likelihood
estimation.

(3) Perform Step (2) of the ICM algorithm (Section 3.2) using estimated
parameters ([, iz, 6y, Gz, B}.

(4) Obtain B by the coding method [1]

(5) Repeat Steps (2)-(4) above N,,,, times.

An initial segmentation of the image (Step 1 of the algorithm)
can be obtained by several methods. We use the histogram concav-
ity analysis method to automatically find the valley in the histogram.
Since our level of noise results in a unimodal gray level histogram,
we create a modified histogram whose bin values are the geometric
means of the corresponding bin values of histograms at three succes-
sive image resolutions (Ix1, 2x2, 4x4). The modified histogram
suppresses the effect of noise and indicates the correct location of the
valley. This method has been remarkably successful in locating
proper threshold values for an initial segmentation. The initial histo-
gram was unimodal with strong clipping at level 0, and conveys
misleading information about the threshold value.

Estimating J; and o; is straightforward and computationally
inexpensive. However, procedures for estimating B are more com-
plex and computationally intensive. To study the effect of estimating
B, we considered the following three variations of the modified
algorithm specified above:

@) ﬁ in Step 1 is obtained from the initial segmentation by
the Coding method.
@ii) fin Step 1issetto 1.5.
(iii) ﬁ is fixed at 1.5 throughout the algorithm (i.e., Step 4 is
omitted).

Segmentation results are given in Figure 7. The segmentations
for all the images compare favorably with those from supervised
learning in Figure 6 and known parameters in Figures 2-3. The
numeral image is an exception. Option (i) for estimating § does not
segment the numeral image properly (Figure 7(b)). In this case, B
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Figure 7. Segmentation results of ICM using supervised learning
for images in Figures 2-3(b)

(a)-(b): B estimated in all iterations, (c)-(d): P estimated but initial-
ized to 1.5, (¢)-(f): B not estimated, but set to 1.5

estimated from the initial segmentation is very small (0.13), and
remains small throughout ending up with a value of 0.185. As a
result, the contextual information is not fully utilized. Options (ii)
and (iii) result in good segmentations for the numeral image. The
final value of B for the numeral image with option (ii) is 2.815.
Option (iii) is computationally inexpensive and should be preferred
to option (ii). We conclude that it is possible to learn the parameters
of the ICM algorithm in an unsupervised manner when the noise is
ii.d. Gaussian.

4.3, Segmentation of Real Images

Segmenting a real image is a more difficult problem than seg-
menting a noisy version of a perfect test image. In our experiments,
a perfect test image has only two gray levels corresponding to the
two labels "object"” and "background”. The real images we have used
also have two labels but each region supports a different distribution
of gray levels. That is, the noise process is not identical for the two
regions (labels). In addition, the shadow effects and gray level varia-
tions in the object and the background imply that the assumption of
independent noise is questionable.

Experiment-6. ICM with Unsupervised Estimation

Two real images were used in this experiment. The first is a
120x128 image containing four flat industrial parts and the second is
a 256x256 image of printed characters. Option (jii) of the modified
ICM algorithm given in Section 4.2 (B = 1.5) was used to segment
the images.

The results are given in Figures 8 and 9. The histogram of the
"printed characters" image is bimodal whereas that of the "industrial
parts" image is essentially flat with a large peak near gray level zero.
Figures 8(c) and 9(c) show the initial segmentations (obtained by
Step 1 of the modified ICM algorithm), and Figures 8(d) and 9(d)
show the final segmentations. For the "industrial parts" image, the
initial segmentation is slightly better than the final segmentation.
This shows that the use of contextual information by the ICM algo-
rithm does not always improve the segmentation resulis. For the
"printed characters” image, the ICM segmentation is better than the
initial segmentation. The final segmentations for both the images are
of acceptable quality. We also ran MPM and SA algorithms on the
"industrial parts" image, but those segmentations were of no better
quality than the ICM segmentation. We conjecture that the failure of
these algorithms to enhance the quality of the segmentation was due
to the violation of the noise model on which the algorithms are
based.
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Figure 8. Segmentation results of "Industrial parts” image

(a) Observed image (b) gray level histogram of the image (c) Thres-
holding of the image at the gray level indicated by the arrow in the
histogram (d) ICM segmentation with parameters estimated by
unsupervised learning

©

Figure 9. Segmentation results of "Printed characters” image

(a) Observed image (b) gray level histogram of the image (c) Thres-
holding of the image at the gray level indicated by the arrow in the
histogram (d) ICM segmentation with parameters estimated by
unsupervised learning

5. Conclusion and Discussion

We have reviewed and listed three MRF model-based pixel
labeling algorithms which approximate the MAP segmentation. The
three algorithms are derived under the i.i.d additive Gaussian noise
assumption. The ICM algorithm performed consistently well when
the synthetic images were corrupted with i.i.d. Gaussian noise and
the SNR = 1. The robustness of the algorithms was tested on images
corrupted by correlated noise and on images with textured regions.
The ICM algorithm provided reasonable segmentation under these
conditions and was the most robust.

These MRF model-based labeling algorithms require that the
parameters of the image model and the degradation model be known
as well as the number of labels. Our experiments indicate that the
parameters of the degradation model can be estimated reliably for
SNR of nearly 1, both in supervised and unsupervised modes under
iid. additive Gaussian noise. The parameter § of the ICM algorithm
could not be estimated reliably for one of the images but could be
adjusted from image data so as to improve segmentation. However,
the small improvement in quality may not justify computational
overhead.

Intuition suggests that the smaller the energy of the a-posteriori
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distribution, the better the scgmentation. Our limited experiments
showed that the true labeling need not have the smallest energy and
the labeling with the smallest energy need not be visually the best.
The phase transition phenomenon [2, 10], by which realizations of a
Markov Random Field tend to be single-label images when the
parameters are large, may cause the poor performance of SA and
MPM when B is 1.5. The ICM algorithm was designed to be imper-
vious to phase-transition [2] and our experiments show this charac-
teristic.

Our experiments with real images indicate that all three algo-
rithms may fail to enhance the quality of segmentation for real
images when the assumed noise model is violated.
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