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Abstract. The estimation of the covariance matrix is a pivotal step in
several statistical tasks. In particular, the estimation becomes challeng-
ing for high dimensional representations of data when few samples are
available. Using the standard Maximum Likelihood estimation (MLE)
when the number of samples are lower than the dimension of the data
can lead to incorrect estimation e.g. of the covariance matrix and subse-
quent unreliable results of statistical tasks. This limitation is normally
solved by the well-known Tikhonov regularization adding partially an
identity matrix; here we discuss a Bayesian approach for regularizing the
covariance matrix using prior knowledge. Our method is evaluated for
reconstructing and modeling vertebra and cartilage shapes from a lower
dimensional representation and a conditional model. For these central
problems, the proposed methodology outperforms the traditional MLE
method and the Tikhonov regularization.

1 Introduction

The covariance matrix estimation is required before performing Principal Com-
ponent Analysis (PCA), Factor Analysis (FA), regressions and several statistical
tasks. If the number of samples is small compared to the dimensionality of the
data, then the covariance estimation is poor. For solving this problem, several
methods were proposed, the most well-known is the Tikhonov regularization [1]
where the covariance matrix is boosted by an identity matrix using a regulariza-
tion parameter (also called the mixing parameter). The regularization parameter
is selected to maximize the expected accuracy of the shrunken estimator, using,
e.g. cross validation. The resulting covariance matrix can be shown to outperform
the standard MLE estimation. The overall aim of this paper is to improve the ac-
curacy of medical diagnosis of diseases, such as Osteoporosis (OP), Osteoarthritis
(OA) and Atherosclerosis. This paper is organized as follows: the next section
introduces the point distribution model and the main regularization methods,
then we analyze two di�erent kinds of priors, the �nal part contains experiments
about vertebrae and cartilage shape reconstruction and a conditional model for
aorta location.



2 Background: Statistical shape model

Statistical shape analysis is a geometrical analysis where a set of shapes, often
represented with vectors, are measured statistically to describe geometrical prop-
erties from similar shapes [2]. In particular, with a Point Distribution Model [2],
a shape x ∈ Rd relies on a set of p labeled landmark points x = [pT

1 ,p
T
2 , . . . ,p

T
p ]T

with pi ∈ R2 or pi ∈ R3.
Principal component analysis (PCA) is a relevant tool for studying correla-

tions of movement between groups of landmarks among the training set popula-
tion. It is an orthogonal projection of the data onto a lower dimensional linear
subspace, such that the variance of the projected data is maximized. For the
data matrix X = [(x1− µ)|(x2− µ)| . . . |(xn− µ)], where µ = E[x] is the mean
of the aligned training examples, the PCA coordinates Y = [y1|y2| . . . |yn] are
given by:

Y = VT X. (1)

In the previous expression V is the matrix of the eigenvectors on column form
obtained with Singular Value Decomposition (SVD) [3] of the estimated covari-
ance matrix Σ̂ = V ΛV T . Summarizing, statistical shape analysis is performed
as follows: given n training shapes a linear model is obtained by �rst align-
ing them to a common coordinate system using Procrustes analysis [4], which
produces the data matrix X. This aligned training set forms a cloud in the d
dimensional space, which can be considered a sample from a probability den-
sity. Estimating the covariance matrix Σ̂ and calculating its eigenvectors V and
eigenvalues Λ gives the linear shape model

x̃ = µ+ V tb, (2)

where Vt ∈ <d×t, whose columns are the eigenvectors corresponding to the t
largest eigenvalues, and b ∈ <t the vector of shape parameters. The performance
of such models can depend on the error of estimation of the covariance matrix
Σ for the PCA.

An estimate of the covariance matrix, Σ̂, is traditionally obtained as follows.
The shapes x are assumed to be distributed according to the normal density,

p(x1,x2, . . . ,xn|Σ,µ)

=
1

(2π)
(nd)

2 |Σ|n2
exp

[
−1

2
Σn

i=1(xi − µ)TΣ−1(xi − µ)
]
, (3)

where |Σ| is the determinant ofΣ. The density of x is called the Likelihood, and
its maximum for varying Σ is called the Maximum Likelihood Estimate (MLE)
[5]. The point of maximum is found to be,

Σ̂ =
1
n

n∑
i=1

(xi − µ)(xi − µ)T , (4)

which is slightly biased, but for large n the bias is negligible.



3 Tikhonov regularization

Using the MLE estimation (4), when the dimensionality of the shape space is
high, and the available number of samples is small, the resulting matrix may be
rank de�cient, implying that some eigenvalues have magnitude close to zero, and
that the corresponding eigenvectors are arbitrary. This limitation encourages the
introduction of more robust covariance matrix estimators [6�10]. Most common
is to use a simple form of Tikhonov regularization [1], where nonzero values are
added to the diagonal elements of the covariance matrix, e.g.

Σ̂reg = Σ̂ + λI, (5)

where λ is a positive regularization parameter. This regularization parameter
is not likely to be known in advance, and �nding its optimal value can be a
cumbersome and computationally heavy task [10]. The analytical methods for
covariance estimation [6�9] propose several methods to estimate the regulariza-
tion parameter using just the sample covariance matrix. However, these methods
rely on the estimation of a speci�c cost function.

4 Gaussian prior regularization

As already showed in [11], starting from the de�nition of normal distribution in
covariance matrix space, and using the Bayes theorem, it is possible to de�ne a
covariance matrix as a random variable:

p(Σ) = (2πs2)−
n2
2 exp

(
−
‖Σ −B‖22

2s2

)
, (6)

where B and s represent the mean and variance of the covariance matrix. The
Gaussian prior should ideally be imposed on the space of symmetric, positive
de�nite matrices, as e.g. approximated by the exponential of the norm of the dif-
ferences of logarithms of matrices [12], but this makes the equation prohibitively
complicated, hence we consider (6) as an approximation. The MAP estimate of
(6) is found to be a system of third degree polynomials [11], and we seek the
solution by the following iterative scheme, estimating the covariance matrix as
shown in [11] as

Σ̂t+1 =
1
n

(
XXT − 2Σ̂t(Σ̂t −B)T Σ̂t

s2

)
, (7)

which we have found to converge for t→∞, when starting at

Σ̂0 =
1
n
XXT . (8)

Following [13], in case of landmark shapes as the data set, we �nd it useful
to de�ne the mean B of the prior distribution of Σ̂ in the following way:

Bij = exp (−Aij) , (9)



where Aij =
∥∥E[pi]− E[pj ]

∥∥
2
, E[pi] being the i'th component the mean of the

aligned training examples.
In case of 3D shapes, such as an m-rep model of cartilage, equation (9) can

be extended as
Bij = exp (−Aij) exp (−Tij) , (10)

where T is the matrix with all the angular distance of the normals of the atom
points. Since the matrices de�ned in equations (9) and (10) consider the rela-
tionship between variables, are symmetric, by construction their eigenvalues are
positive or equal to zero; we can assume that they are covariance matrices.

5 Wishart prior regularization

A shape representation based on a Wishart distribution priors assume indepen-
dence between points, hence it is a prior of spatial noise and not shape variation
where probably a Gaussian prior is more suitable.

Consider shapes consisting of points,

x = [pT
1 ,p

T
2 , . . . ,p

T
p ]T (11)

with x ∈ Rd, a collection of shapes,

X = [(x1 − µ)|(x2 − µ)| . . . |(xn − µ)], (12)

as a d × n matrix of reals, ignore the stochastic dependency on the mean, and
write

S = XXT . (13)

When the landmarks pi − E[pi] are independently and normal distributed as
N(0,Σi), then S is distributed according to the Wishart distribution [5, Chap-
ter 7],

p(S|Σ, n) =
|S|(n−d−1)/2

exp
(
− 1

2 tr
(
Σ−1S

))
2nd/2 |Σ|n/2

Γd

(
n
2

) , (14)

where

Σ =


Σ1 0 . . . 0
0 Σ2

...
. . .

0 Σp

 , (15)

and Γd is the multivariate Gamma function,

Γd (n) = πd(d−1)/4
d∏

i=1

Γ

(
n− 1

2
(i− 1)

)
. (16)

Using the Bayes theorem, we can write

p(Σ|Ψ ,m) =
|Ψ |m/2

exp
(
− 1

2 tr
(
ΨΣ−1

))
2md/2 |Σ|(m+d+1)/2

Γd

(
m
2

) , (17)



where Ψ and m are �xed as parameters of the density. The inverted Wishart
density originates as the density of S−1. Since the evidence is independent on
Σ, we �nd the MAP estimate as:

Σ̂ = arg max
Σ

p(S|Σ, n)p(Σ|Ψ ,m) (18a)

= arg max
Σ

c |Ψ |m/2
exp

(
− 1

2 tr ((S + Ψ
)
Σ−1

))
|Σ|(n+m+d+1)/2

(18b)

At this point, we can consider Ψ as independent of Σ, the solution to (18) is
found by di�erentiation as:

Σ̂ =
1

n+m+ d+ 1
(S + Ψ) . (19)

Or we can include Ψ = s2Σ−1 in the estimation, in which case the maxi-
mization results in system of quadratic equations

Σ̂
2

=
1

n+ 2m+ d+ 1

(
SΣ̂ + 2s2I

)
. (20)

We solve this iteratively as

Σ̂t+1 = Σ̂t − δ
(
Σ̂

2

t −
1

n+ 2m+ d+ 1

(
SΣ̂t + 2s2I

))
, (21)

where δ is a su�ciently small constant to avoid divergence, n and d are respec-
tively still the number of samples and dimension, m is the only user-speci�ed
parameter that de�nes the density of the Wishart distribution and in our exper-
iments was set to 40 for vertebrae and 50 for cartilages.

We call this approach MAP-PCA, and the prior described in (7) as Normal

prior, while the equation (19) de�ne the Inverted Wishart (IWIS) prior, and the
equation (20) the Uncommitted Inverted Wishart (UIWIS) prior.

6 Experiments

Using high-resolution (full boundary) vertebral shapes from radiographs may
lead to reliable results when detecting osteoporotic fragility fractures [14]. How-
ever, manual annotation of full boundaries is time consuming. For studies on
osteoarthritis, detailed m-rep shape models of cartilage also lead to accurate re-
sults. In this case the problem of building a high-resolution model is, however,
the computational cost during the automatic segmentation.

In the following sections we give examples of high-resolution shape models
reconstructed from the coarse annotations, using the MAP-PCA estimation with
the three priors described above, and compare to the result obtained using MLE
and Tikhonov estimation.



Given y be an incomplete or lower dimensional shape vector of dimensionality
l < d, we can obtain the corresponding higher resolution shape x ∈ Rd using a
linear mapping L : Rd → Rl :

y = Lx, (22)

For our experiments the matrix L is a sampling matrix connected identical points
between x and y. Since the system is overdetermined, the solution is easily not
uniquely de�ned. In [15], x is obtained minimizing the functional

E(x) = ‖Lx− y‖22 . (23)

Since x belongs to the shape model (2), the functional transforms to:

E(b) = ‖Qb− y‖22 , (24)

where Q = LV tΛt, and V t are the eigenvectors corresponding to the t principal
eigenmodes of the covariance matrix estimated with one of the method described
in the previous sections. It can be shown that E(b) is minimized by b∗ = Q+y
[15], where Q+ is the Moore-Penrose pseudo-inverse [3]. Hence x is estimated
by

x̃ = µ+ V tΛtb
∗. (25)

Experiments are based on the reconstruction of incomplete data and are
divided into two groups: vertebrae shapes and cartilage shapes. The eigenval-
ues and eigenvectors of the covariance matrix computed from the training set
through the MLE and the Bayesian methods.

The reconstruction error of vertebra and cartilage shapes between a high res-
olution shape and a reconstructed version of the same from a lower dimensional
version is computed for all the p points of the boundary using the expression:

Efull =
1
n

p∑
i=1

∥∥pi,reconst. − pi,orig.

∥∥
2

(26)

The performances of MAP-PCA and MLE methods are compared using mean
reconstruction error over all the test shapes for di�erent number of principal
eigenmodes.

6.1 Reconstruction of vertebra shapes

For clinical studies on osteoporosis for fracture quanti�cation, we use a 6 points
representation of a vertebra, due to the fact that three points in the lower border
of the vertebra and 3 points in the upper part of the vertebra can describe the
heights measure de�ned by Genant [16] that is the gold standard for fracture
quanti�cation. In order to perform more sophisticated shape analysis, a full
contour is needed. Therefore, an extrapolation of the full contour from the six
points is a useful initialization for a segmentation algorithm like [17]. During the
experiments, the shapes in the training set were the full boundaries made of 52
points, while for the test shapes only 6 out of these 52 points were used. Using
the shape model, (25), the corresponding high-resolution vertebral boundary was
reconstructed from a low-dimensional test shape.



6.2 Reconstruction of cartilage shapes

We tested the improvement of our covariance estimation also for a medial atoms
representation of tibial knee-cartilage, in order to produce a higher resolution
m-rep model. We have performed this evaluation by removing atoms from the
models and by measuring, how well the interpolation allows for reconstruction
of the original model. The cartilage data set is composed of 620 knee MRI scans
from 159 subjects including both left and right knees and baseline and follow-up
scans from a longitudinal 21-month study. The dimensions of the scans are 256 x
256 pixels with around 110 slices. The population includes healthy and diseased
knees with varying degree of OA from both men and women at ages from 21
to 78. The test sets were made to be from 10 and 20 samples, and the relative
training sets to be the remaining 610 and 600 samples in a leave-one patient-out
fashion.

For each knee, we have a three-dimensional m-rep model of the medial tibial
cartilage compartment estimated from a fully automatic segmentation [18, 19].
Figure 1 illustrates a cartilage shape model is illustrated for a cropped knee
MRI. We produced a low-resolution lattice by removing nodes from the m-rep

Fig. 1. Sagittal slice from Turb3D T1 MRI. The contours are the manual outlines of
femoral and tibial cartilage performed by a radiologist.

representation of the cartilage, and calculated the mean reconstruction error
between the original and the reconstructed 3D shapes using (26). To represent a
medial lattice for a cartilage sheet, p = 32 points were used, hence the dimension
is d = 96. During the experiments 24 points were removed randomly, and only
8 were left, so the reduced dimensions is l = 24.



7 Results

A typical vertebral shape of 52 points (104 dimensions) is depicted in Figure 2(a),
while the reduced and reconstructed shape is depicted in Figure 2(b). Figure 2(c)
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Fig. 2. (a) An image of a vertebra with the shape annotation. (b) An original (con-
tinuous line) and reconstructed (dashed line) shape annotation. The shape's 52 points
are reconstructed using only the 6 points depicted as the big stars. The vertebra re-
construction error for di�erent number of training shapes: (c) 20 and (d) 40. Here the
results with the IWIS and UIWIS are for noisy test shapes with s = 1 and m = 40 as
parameters of the equation (19) and (20). Instead the Normal prior uses s = 2 and the
Tikhonov regularization parameter is 0.4665. Due to no further changes of the curves,
only the �rst 20 eigenmodes are depicted.

and 2(d) shows the di�erent mean reconstruction errors obtained using (26) for
two di�erent sample sizes and when varying t, the number of eigenvalues included
in the reconstruction. The vertebra experiments demonstrate that the MAP-
PCA method generally improves the reconstruction especially for few samples
and a small number of eigenvalues. It seems the Wishart prior performs relatively
better than the Normal prior.



For m-rep modeling of tibial knee-cartilage, the result using the �rst 20 eigen-
modes, is shown in Figure 3(a)(b)(c). The mean reconstruction error using the
discussed covariance estimators is shown in Figure 3(d)(e). The cartilage shapes
show a considerable improvement, when using the Normal prior, and an almost
as good improvement, when using the Uncommitted Inverted Wishart prior when
using only 10 training shapes.

8 Future experiments

Doing further investigation about regression, we also obtained early good results
with a conditional shape model for �nding the aorta given the spine. Where the
spine model is a collection of the 6 points representation of four lumbar vertebrae,
while the aorta model is a sequence of aorta-wall points. For each wall there are
9 points equidistantly sampled along aorta boundaries, hence no sliding along
boundaries is necessary to model. An aorta shape can be predicted using an
equation similar to (25) where the unknown points of the previous experiments
are the aorta points x1: Figure 4 illustrates the typical result of our method
with the lumbar vertebrae (thin continuous line), the annotated aorta (thick
continuous line) and the predicted aorta (dashed line).

x1 = µ1 + Σ12Σ−1
22 (S2 − µ2) (27)

and where µ1 and µ2 are the mean shape of all the aortas and the mean shape
of all the spines respectively. Σ11 represents the covariance of the aortas, Σ22

the covariance of spines, and Σ12 and Σ21 are the cross-covariance. Here the
need is to regularize the covariance matrix Σ22 of vertebra.

9 Conclusions

E�cient estimation of covariance matrices is an important task for statistical
shape analysis. In this paper we discuss a novel method called MAP-PCA for
estimate the covariance matrix in case of small sample size. The matrix obtained
with MAP-PCA generally outperforms the traditional MLE method with and
without Thikhonov regularization. In addition, the experiments show that the
choice of a suitable prior leads to better results. In particular, the Wishart priors
assume statistically independent points, and therefore it performs best for vari-
ations due to noise and not shape variation. The Normal prior is not limited to
zero o�-block-diagonal elements and may be used to steer the estimate towards
preferred shape variations. Our conclusion is that the choice of prior is related
to various factors, by the number of samples available to the shape variance, and
that this method is a valid substitute to the Thikhonov regularization where the
result is based on the search of the optimal mixing parameter.
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Fig. 3. Overlay of the original and the reconstructed cartilage shape: (a) projection on
the plane XY, (b) projection on the plane XZ, and (c) projection on the plane YZ. The
continuous line is the original shape and the dashed one is the reconstruction. Here the
removed points are chosen randomly. The reconstruction error for di�erent number of
training shapes: (d) 10 and (e) 20. Here the results are for noisy test shapes cf. Figure 3,
and using s = 1 and m = 50 in the equation (20). Instead the Normal prior uses s = 4
and the Tikhonov regularization parameter is 0.6443. Due to no further changes of the
curves, only the �rst 20 eigenmodes are depicted.



Fig. 4. The typical result of our method: The lumbar vertebrae represented by 6
points(continuous line), the annotated aorta(continuous line) and the predicted aorta
(dashed line).
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