TREESTATS manual

Aasa Feragen, Megan Owen

June 25, 2013

1 Introduction

The TREESTATS software package is an implementation of the hypothesis tests and set ver-
sions of means, PCA and LDA presented in the paper [1].
The TREESTATS software package consists of the following MATLAB functions:

set_mean.m (computes the set mean based on a distance matrix)

pca.m (from a file with input trees and a number of random iterations, computes the
best principal geodesic segment and returns its endpoints)

1da.m (from a testset file with input trees and a number of random iterations, computes
the best lda segment and returns its endpoints. Given an additional testset file with
input trees, a classification accuracy is additionally returned.)

hypothesis_tests_sturmmeans.m (permutation tests for dataset means, variance and
spread, where means and variance rely on converged (Sturm) means)

hypothesis_tests_setmeans.m (permutation tests for dataset means, variance and
spread, where means and variance rely on set means)

treestats_demo.m (a software demonstration. To run, go to the directory containing
this manual and all .m files and run treestats_demo).

These MATLAB functions rely on the following Java executable files, which can also be used
on their own:

GTP. jar This is the tree-space geodesic algorithm by Megan Owen and Scott Provan [3].
The current version as of June 20 2013 is included in the TREESTATS software pack-
age; however, we recommend the user to check http://www.unc.edu/depts/stat-or/
miscellaneous/provan/treespace/ for an updated version. An instruction manual
for running this software independently is also available at this site.

SturmMean. jar This is the SturmMean algorithm by Ezra Miller, Megan Owen and
Scott Provan [2]. The current version as of June 20 2013 is included in the TREESTATS
software package; however, we recomend the user to check https://cs.uwaterloo.ca/
~m2owen/code.html for an updated version. An instruction manual for running this
software independently is also available at this site.

PCA.jar This contains the algorithms related to Principal Component Analysis. An
instruction manual can be found in Appendix A.

LDA.jar This contains the algorithms related to Linear Discriminant Analysis. An
instruction manual can be found in Appendix B.

e analysis. jar This contains a helper program used by the python script create_comp_
matrix.py, and is treated as a black box.

Moreover, a single python script is used by some of the MATLAB functions:

e create_comp_matrix.py (Computes a distance matrix between two sets of trees given
by two input text files).

2 Installation

TREESTATS is available at http://image.diku.dk/aasa/software.php. It requires Java
version J2SE 6.0 which can be downloaded for free at java.sun.com, and Python, which can
be downloaded for free at python.org.

The following files are included with the distribution:

e the .m, .py and . jar files listed in Section 1
e the GNU general public license under which this code is released

e this manual treestats_manual.pdf

3 Running the software

In general, tree-valued input should consist of . txt files containing one tree per line, in Newick
format. See http://evolution.genetics.washington.edu/phylip/newicktree.html for
a description of the Newick format. The trees can also contain vectors on the edges instead
of single lengths. See Section 3.2 for details, and see the file airways_dataset.txt for an
example input file.

For the MATLAB functions, see their preamble for general instructions on running the
code, but pay attention to the note on selecting the epsilon parameter in Section 3.1.

3.1 Choosing convergence parameters for hypothesis tests, PCA and LDA

Some of the included functions rely on a convergence parameter epsilon. The SturmMean.jar
uses epsilon to determine convergence towards the Fréchet mean, which means epsilon
needs to be selected when running hypothesis_tests_sturmmeans.m. Both LDA and PCA
rely on projecting points onto geodesics, which is implemented as an iterative procedure
depending on a convergence parameter epsilon. Selecting a suitable epsilon value depends
on the properties of the input trees; too large epsilon gives inaccurate results while too small
epsilon gives slow convergence. This is important when running LDA. jar, PCA. jar, LDA.m
and PCA.m. Suitable choices of epsilon depend on the typical norm of a branch attribute.
For the examples in this manual, an epsilon in the range 10~% to 10~% works well; for the
airway examples used in the treestats demo, an epsilon of 10~ to 1072 works well.

3.2 Trees with Vectors on their Edges

As described in [1], we can also consider a space of trees in which each split is associated
with an m-dimensional vector instead of a single length. To represent trees in this space,
replace each edge length in the Newick format with a vector of the form [a1 a2 a3 ... ap),
where a; € R for each ¢. That is, the vector consists of m real numbers separated by single
spaces, and enclosed by square brackets.

For example, the tree in Figure 1 should be represented as ((a:[1 1],b:[-1 1]1):[2
0],c:[4 -1.5]); in the input tree file.

a p ¢

Figure 1: Tree with vectors on its edge instead of lengths.

4 License

Copyright (C) 2013 Aasa Feragen and Megan Anne Owen

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PAR- TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

References

[1] A. Feragen, M. Owen, J. Petersen, L.H. Thomsen, M.M.W. Wille, A. Dirksen, and
M. de Bruijne. Tree-space statistics and approximations for large-scale analysis of anatom-
ical trees. In Information Processing in Medical Imaging, 2013.

[2] E. Miller, M. Owen, and S. Provan. Averaging metric phylogenetic trees. arXiv:1211.7046
[math.MG], 2012.

[3] M. Owen and J. S. Provan. A fast algorithm for computing geodesic distances in tree
space. IEEE/ACM Trans. Comp. Biol. Bioinf., 8:2-13, 2011.

A Manual for PCA. jar

This jar file contains algorithms for related to doing Principal Components Analysis in tree
space.

A.1 Running PCA
PCA is run from the command line, using Java. The following command assumes you are in
the directory containing PCA. jar.

> java -jar PCA.jar [options] treefile

treefile is the name of the file containing the list of trees. For all tree files, the trees should
be one per line, in Newick format. See http://evolution.genetics.washington.edu/phylip/newick
tree.html for a description of the Newick format. The trees can also contain vectors on the

edges instead of single lengths. See Section 3.2 for details.

Options (described below in more detail):

-a <algorithm>

-e <epsilon>

-f <otherTreeFile>

-i <numIterations>

-0 <outfile>
-r

-u

select the algorithm to be run.
Choices for <algorithm> are random, projection_indices, and
distances_to_geo.

set the value of epsilon used to determine the precision of the tree
projections.

specify a second tree file.
display a summary of the options.

max number of iterations for algorithm. Default is 100.
numIterations must be less than 2147483 647.

store the output in the specified file. Default is output.txt.
output the number of orthants that a geodesic passes through.

set input trees as unrooted. Default is trees are rooted.

Option -a selects which algorithm is run. There are currently three options:

random

projection_indices

distances_to_geo

is used to randomly search for the best fitting geodesic between the
given trees. More specifically, at each iteration, this algorithm ran-
domly choses two trees (t; and t3) from the set of input trees, and
computes the sum of the squared distances from each input tree to its
projection onto the geodesic between t; and t2. The algorithm then
prints a line with the following information to the output file: index
of tree t1 in input tree file, index of tree to in input tree file, number
of orthants that the geodesic passes through (if -r flag is used), sum
of squared distance of trees to their projections. Note that the input
tree file is indexed starting at 0.

computes the projections of the trees in treefile onto the geodesic

between the two trees in otherTreeFile, as specified by the -f flag.
More specifically, if ¢; is the first tree in otherTreeFile and to is
the second tree in otherTreeFile, then we linearly parametrize the
geodesic from ¢ to ta by t, such that ¢ = 0 at t; and ¢ = 1 at to. Each
projection is output as a real number between 0 and 1, representing
the value of ¢ at that point on the geodesic.

calculates the geodesic distances between the trees in the input file
(tree file) and their projections onto the geodesic between the first
two trees in otherTreeFile. These geodesic distances are output one
per line.

Option -e is used to specify the epsilon value that is the maximum error allowed in
calculating tree projections. Specifically, epsilon is the maximum geodesic distance allowed
between the true projected tree and the approximate tree used.

Option -f is used to specify a second tree file, as required by the algorithm options
projection_indices and distances_to_geo.

Option -h displays a brief usage method and exits.
Option -i specifies the number of iterations for the algorithm option random.

Option -o is used to specify either the output file or the prefix for the output files if one
is generated for each iteration. The default is output.txt.

Option -r is used with algorithm option random to specify that the output file should
also contain the number of orthants that a geodesic passes through. This includes the start-
ing and ending orthants.

Option -u is used to indicate that the trees in treefile are unrooted. The default is
rooted trees. The root acts as an extra leaf that does not appear in the Newick representation,
and thus this flag must be used correctly, or the output may be wrong.

A.2 Examples
A.2.1 Example 1: Algorithm random

The first example consists of four trees, arranged in tree space as shown in Figure 2. The
trees are labelled by their index in the input file input.txt, and by their coordinates in tree
space. The coordinates correspond to the splits in the following order: ab|cde, abe|de, ac|bde,
bclade.

abc|de
A
/67\
a b d e l .2, (0,4,2,0) c
1, (2,3,0,0
(23.00)
b
a
d e
0,(3,1,0,0) ® T
3,.(0,0.5,0,]) bclade
ab|cde
c
a ac|bde

Figure 2: Location of trees in Example 1. The axes are labelled with their corresponding
split, and the coordinates represent the splits in the following order: ab||cde, abel|de, acl|bde,
bellade.

To run this example, put PCA.jar into the directory examples/PCAexamplel. At the
command line, go to that directory, and type the following:

java -jar PCA.jar -a random -e 0.000001 -i 10 -o output -r -u input.txt

Running this command will generate the files output_0, output_1, ..., output_9 in the cur-
rent directory. If we use outDir/output instead of output in the above command, the files

Index 1 | Index 2 | Num Orthants | Geo Distance Score
0 1 1 2.236068 31.45
0 2 2 5.830952 7.625
0 3 2 4.031129 19.836779
1 2 2 4.123106 15.0
1 3 2 3.905125 15.819672
2 3 2 4.609772 15.222222

Table 1: Possible second lines for the output files from Example 1.

would be generated in the subdirectory outDir.
Compare output_O to examplel_ output_O in the PCAexamplel subdirectory.

Index 1 Index 2 Num Orthants Geo Distance Score
3 2 2 4.6097722286464435 15.23343

The first line gives the headers for the second line. As the choice of tree endpoints for
the geodesic is random, the second line may differ from your file. The possible second lines
are given in Table 77, where the distances have been rounded to 6 decimal places. The first
two numbers represent the indices in the input file of the two endpoint trees of the geodesic.
The first tree in the file has index 0, the second tree has index 1, etc. The following col-
umn, Num Orthants, only appears if the -r flag is used. It gives the number of orthants
that the geodesic passes through, including the beginning and ending ones, but not including
the boundary orthants. Here, the 2 indicates that the geodesic starts in one orthant, passes
through a boundary orthant, and finishes in a second orthant. The next column gives the
geodesic distance between the two selected trees. That is, it gives the length of the geodesic
being projected onto. The final column gives the score of the projections, or the sum of
squared geodesic distances between the remaining input trees and their projections on the
geodesic.

Note that the accuracy of the projections, and hence the score, is related to the epsilon
chosen, not to the number of decimals displayed.

A.2.2 Example 2: Algorithm projection_indices

The second example consists of same four trees as in Example 1 (Figure 2).
To run this example, put PCA. jar into the subdirectory examples/PCAexample2. At the
command line, go to that subdirectory, and type the following:

java —jar PCA.jar -a projection_indices -e 0.000001 -f endpoints.txt -r -u
input.txt

One file will be generated in the current directory, output . txt, which contains the indices
of the projections of the four trees in input.txt onto the geodesic that has the two trees
in endpoints.txt as its endpoints. Compare output.txt to example2_output.txt in the
PCAexample2 subdirectory:

0.0
1.0
1.0
0.6

0000005637490502

The first two trees in input.txt are the same as the two trees in endpoints.txt, and
so are the endpoints of the geodesic we are projecting onto. Thus they project onto them-
selves, giving indices 0 and 1, respectively. The third tree in input.txt also projects onto
the second endpoint, and thus has index 1.0. The final tree, however, projects non-trivially
onto the middle of the geodesic.

A.2.3 Example 3: Algorithm distances_to_geo

The third example consists of the same four trees as in Example 1 and 2 (Figure 2).
To run this example, put PCA. jar into the subdirectory PCAexample3. At the command
line, go to that directory, and type the following;:

java —-jar PCA.jar -a distances_to_geo -e 0.000001 -f endpoints.txt -r -u
input.txt

One file will be generated in the current directory, output.txt, which contains the
geodesic distances from the trees input.txt to their projections onto geodesic that has the
two trees in endpoints.txt as its endpoints. Compare output.txt to example3_output.txt
in the PCAexample3 subdirectory:

0.0

0.0
4.123105625617661
3.8013155617496426

The first two trees in input.txt project to themselves, so those two geodesic distances
are 0. The third and fourth trees project non-trivially, and thus have a non-zero geodesic
distance.

B Manual for LDA.jar
B.1 Running LDA

LDA is run from the command line, using Java. The following command assumes you are in
the directory containing LDA. jar.

> java -jar LDA.jar [options] treefile

treefile is the name of the file containing the list of trees. For all tree files, the trees should

be one per line, in Newick format. See http://evolution.genetics.washington.edu/phylip/newick
tree.html for a description of the Newick format. The trees can also contain vectors on the

edges instead of single lengths. See Section 3.2 for details.

Options (described below in more detail):

-a <algorithm> select the algorithm to run.
Choices for <algorithm> are random, projection_indices, and
distances_to_geo.

-e <epsilon> set the value of epsilon used to determine the precision of any pro-
jections.

-f <otherTreeFile> specify a second tree file.
-g <otherTreeFile> specify a third tree file.

-h display a summary of the options.

-i <numIterations>

-m <means>

-0 <outfile>

max number of iterations for algorithm. Default is 100.
numIterations must be less than 2147483 647.

specify the means for classification.
store the output in the specified file. Default is output.txt.

set input trees as unrooted. Default is trees are rooted.

Option -a selects which algorithm is run. There are currently two options:

random

classify

is used to randomly search for the geodesic with the lowest LDA
score. More specifically, at each iteration, this algorithm randomly
choses two trees (t1 and t2) from the third tree file, and computes the
score of the projections of the trees in the first tree file (Set 1) and
second tree file (Set 2) onto the geodesic with endpoints ¢; and t9, as
described in [1]. The algorithm then prints the following information
to an output file: tree ¢1, tree t9, score, geodesic index of the mean of
the projections of set 1 (Mean 1), and the geodesic index of the mean
of the projections of set 2 (Mean 2).

classifies the trees in the tree file by which mean their projection is
closer to. The projection is onto the geodesic specified by the end-
points in the second tree file. The classifications (“1” or “2”) are
written one per line into in the output file, in the same order as the
trees in tree file.

Option -e is used to specify the epsilon value that is the maximum error allowed in
calculating tree projections. Specifically, epsilon is the maximum geodesic distance allowed
between the true projected tree and the approximate tree used.

Option -f is used to specify a second tree file, as required by the algorithm options

random and classify.

Option -g is used to specify a third tree file, as required by the algorithm option random.

Option -h displays a brief usage method and exits.

Option -i specifies the number of iterations for the algorithm option random.

Option -m <means> specifies the two mean indices for the algorithm option random.
They should be separated by a single comma, without any spaces.

Option -o is used to specify either the output file or the prefix for the output files if one
is generated for each iteration. The default is output.txt.

Option -u is used to indicate that the trees in treefile are unrooted. The default is
rooted trees. The root acts as an extra leaf that does not appear in the Newick representation,
and thus this flag must be used correctly, or the output may be wrong.

B.2 Examples
B.2.1 Example 1: Algorithm random

The first example consists of six trees, arranged in tree space as shown in Figure 3. The
coordinates correspond to the splits in the following order: ablcde, abc|de, ac|bde, bclade.
Trees 1 and 2 are in the file set1.txt and trees 3, 4, 5, 6 are in the file set2.txt, in that
order. The file endpts.txt contains trees 1, 2, 3, 4.

abcl|de
A
/(S\
a b d e 1l .j’, (0,4,2,0) C
2,(2,3,0,0)
) T 6 (0310
® 5, (02,00 a
(@200 d e
1,(3,1,0,0) ® T
4,.(0, 0.5,0,1) belade
ablcde

S

ac|bde

Figure 3: Location of trees in Example 1. The axes are labelled with their corresponding
split, and the coordinates represent the splits in the following order: ab|cde, abc|de, ac|bde,
belade.

To run this example, put LDA.jar into the directory examples/LDAexamplel. At the
command line, go to that directory, and type the following:

java —jar LDA.jar -a random -e 0.000001 -i 10 -o output -u -f set2.txt -g
endpts.txt setl.txt

Running this command will generate the files output_0, output_1, ..., output_9 in the
current directory.
Compare output_0 to examplel_output_O in the examplel subdirectory.

((a:1,b:1):2,c:1,(d:1,e:1):3);
((a:1,b:1):3,c:1,(d:1,e:1):1);
Score: 3.025718900029112
Mean 1: 0.5

Mean 2: 0.09999998656273751

The first two lines are the trees chosen as the endpoints for the geodesic . Letting A be
the trees in setl.txt and B be the trees in set2.txt, the third line is the value

d*(ju(pr (A)), ilpr, (B)))
§*(pr,(A)) + 8*(pr,(B))

where pr. (A) is the projection of the trees in set A onto the geodesic 7, u(AX) is the mean of

9

Endpoint 1 | Endpoint 2 Score Mean 1 Mean 2
1 2 3.025719 0.5 0.9
348.22839 | 0.161765 | 0.668382
2520.596414 | 0.092308 | 0.845192
133.203547 0.0 0.602941
363.629338 | 0.065574 | 0.6926238
1.110813 0.666667 0.55

W N DN = =
= W W

Table 2: Possible output values for Example 1.

the trees in set X, and d is the geodesic distance. This is the same as Equation (4) in [1].

The fourth line in file example_output_0 is the index on geodesic v of the mean of the
projections of the trees in setl.txt, and the fifth line in the file is the index on geodesic ~y of
the mean of the projections of the trees in set2.txt. Possible alternative values are given in
Table 2. The numbers have been rounded to 6 decimal places. Additionally, the order of the
endpoint trees determine which tree has index 0 and which has index 1, and thus the indices
of the mean trees.

Note that the accuracy of the projections, and hence the score, is related to the epsilon
chosen, not to the number of decimals displayed.

B.2.2 Example 2: Algorithm classify

The second example consists of same six trees as in Example 1 (Figure 3).
To run this example, put LDA. jar into the subdirectory examples/LDAexample2. At the
command line, go to that directory, and type the following:

java —jar LDA.jar -a classify -e 0.000001 -f endpoints.txt -r -u input.txt

One file will be generated in the current directory, output.txt, which contains the indices
of the projections of the four trees in input.txt onto the geodesic that has the two trees
in endpoints.txt as its endpoints. Compare output.txt to example2 output.txt in the
LDAexample2 subdirectory:

o O O O

0.
1.
1.
0.6000000537490502

The first two trees in input.txt are the same as the two trees in endpoints.txt, and so
are the endpoints of the geodesic we are projecting onto. Thus they project onto themselves,
giving indices 0 and 1, respectively. The third tree in input.txt also projects onto the

second endpoint, and thus has index 1.0. The final tree, however, projects non-trivially onto
the middle of the geodesic.

10

