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Abstract. Geometric trees can be formalized as unordered combinato-
rial trees whose edges are endowed with geometric information. Exam-
ples are skeleta of shapes from images; anatomical tree-structures such
as blood vessels; or phylogenetic trees. An inter-tree distance measure is
a basic prerequisite for many pattern recognition and machine learning
methods to work on anatomical, phylogenetic or skeletal trees. Standard
distance measures between trees, such as tree edit distance, can be read-
ily translated to the geometric tree setting. It is well-known that the tree
edit distance for unordered trees is generally NP complete to compute.
However, the classical proof of NP completeness depends on a particular
case of edit distance with integer edit costs for trees with discrete labels,
and does not obviously carry over to the class of geometric trees. The
reason is that edge geometry is encoded in continuous scalar or vector
attributes, allowing for continuous edit paths from one tree to another,
rather than finite, discrete edit sequences with discrete costs for discrete
label sets. In this paper, we explain why the proof does not carry over
directly to the continuous setting, and why it does not work for the im-
portant class of trees with scalar-valued edge attributes, such as edge
length. We prove the NP completeness of tree edit distance and another
natural distance measure, QED, for geometric trees with vector valued
edge attributes.

1 Introduction

Trees are basic structures in mathematics and computer science, as well as in
nature. Tree-structures appear, for instance, as airway trees in the lungs [20,21],
as blood vessel trees [13], or as skeleta of more general shapes [4,9,10,15,17,19].
Anatomical and biological trees carry information about the organ or organism
that contains them, and many pattern recognition algorithms, e.g., in computer
vision and medical image analysis, require a distance measure between tree-
structures as input [5, 10, 15]. Tree edit distance (TED) is a classical distance
measure between trees, which has been used in many applications [9, 10, 14, 15,
17]. Anatomical trees are geometric trees, in the sense that they carry useful
geometric information about their branches’ shape, size and position. TED is
readily translated to handle geometric properties, but anatomical trees are often
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Fig. 1. For many applications, each edge e is represented by an edge attribute consisting
of a set of n equidistant landmark points ai ∈ Rm, where m = 2, 3, giving a point
a = (ai)

n
i=1 ∈ Rmn. We typically assume that the first landmark point a1 is translated

to the origin. The cost of deforming one edge attribute, or shape, a into another edge
attribute, or shape, b is the Euclidean norm ‖a− b‖2 =

√
d21 + . . . + d2n.

not adorned with a natural branch labeling or order. This means that we need
to be able to compare unordered trees.

Tree edit distance for unordered trees is generally NP complete to compute [1,
22]. However, the classical proof of NP completeness is made for a particular case
of edit distance with integer edit costs for trees with discrete labels, and it does
not obviously carry over to the class of geometric trees. This is because the
geometric trees have branch descriptors that are vectors or scalars, which thus
form a path-connected set of branch attributes, with continuous edit costs.

1.1 Geometric trees

By a tree we shall mean a rooted combinatorial tree T = {V,E, r} where V is a
set of vertices, E ⊂ V ×V is a set of edges, and r ∈ V is a designated root vertex.
By geometric tree we shall mean a pair (T , x) where T is a combinatorial tree
and x : E → A is a map from the edge set of T into a space A of geometric
attributes, which attaches an edge attribute xe ∈ A to every edge e ∈ E. The
space A of geometric attributes could, for instance, be a space of edge lengths,
(R≥0), a space of edge embeddings into plane or space ({f : [0, 1] → Rm}, m =
2, 3), or, as a discretization of the latter, a space of landmark point sets that
describe the shape of the edge in plane or space ((Rm)n, where n is the number
of landmark points per edge, and m = 2, 3), see fig. 1. In this paper, we shall
consider situations where the attribute space is R≥0 or RN for some N ∈ N.

1.2 Related work

Tree edit distance, or TED [1, 11, 16, 22], is defined as the minimal total sum of
costs of edit operations needed in order to turn the first tree into the second. In
its most general form, TED is formulated for combinatorial trees T = (V,E, r)
endowed with edge (or vertex) labels given by a mapping x : E → L , where L
is a space of labels. The set of labels could be a vector space, as in the case of
geometric trees, but in many applications previously studied, the set of labels
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is a finite dictionary. The set of edit operations typically consists of deletion of
edges, insertion of edges, and relabeling of edges1 (although extra edit operations
have been introduced in some cases [9]). Note that insertion and deletion can
also happen to edges which are not leaves. A sequence of edit operations that
turn one tree into another is called an edit path between the two trees. When
restricted to classes of trees with additional assumptions, such as edge order or
bounded size, there exist a number of polynomial time algorithms [3, 11, 22] for
computing the tree edit distance, and with further restrictions on the allowed
complexity of the edit paths, there are linear time algorithms available [18].
However, for general, unordered trees, the edit distance computation problem
has been shown to be NP complete by Zhang, Statman and Shasha [22]. Their
proof can be simplified to the trick explained in section 2 below, originally used
by Matousek and Thomas to prove NP completeness of the subtree problem [12].
However, as we shall see below, this proof does not automatically transfer to
geometric trees with continuous edge labels, and in fact it fails for trees with
scalar valued labels. The same is true for the original, slightly more complicated
proof in [22]. Using a construction similar to the NP completeness proof of [12],
we prove that the computation of tree edit distance is NP complete for the space
of geometric trees with vector valued edge labels.

From a statistical point of view, TED is not an optimal distance between
geometric trees, as it does not define unique geodesics [6]. Feragen et al. [7] have
defined a metric on geodesic trees called the QED metric and showed that it
has better statistical properties [6]. In section 3 we give a brief account of this
metric and prove that it, too, is NP complete to compute for geometric trees
with vector edge attributes.

2 Tree Edit Distance

The original proof of NP completeness for edit distance between unordered,
rooted trees, is formulated for the class of rooted trees T = (V,E, r) with
edge labels x : E → L where L is a discrete set of labels. The available edit
operations are edge deletion, edge insertion and edge relabeling, which have cost
1 each. This measure is called integer TED.

The exact 3-cover problem. The NP completeness proof for integer TED [12,
22] is based on the exact 3-cover problem. Let L = {l1, . . . , l3q} be a set, and
let S = {Ci|i = 1 . . . N} be a cover2 of L by sets Ci ⊂ L, all with 3 elements.

1 In some papers, e.g. [22] the edit operations (delete, add, edit) are performed on
vertices rather than edges. This is equivalent to the approach taken here: Represent
the branches of an anatomical tree as attributed nodes, joined together in the obvi-
ous tree structure. By defining edit operations on nodes, we would get exactly the
same definition as the one used here. We, however, prefer to represent branches in
geometric trees as edges, as this is more intuitive, and also quite standard [9, 15].

2 A cover of L is a family of subsets Ci ⊂ L such that L ⊂
⋃N

i=1 Ci.
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Fig. 2. Any instance of the exact 3-cover problem can be solved by computing the edit
distance between these two trees.

The exact 3-cover problem is the problem of deciding whether there is an exact
subcover3 of S (and identifying such a subcover). The exact 3-cover problem is
a classical NP-complete problem [8].

TED and the exact 3-cover problem. We first review the original proof
of NP completeness for integer TED [12, 22]. Assume given an instance of the
exact 3-cover problem, i.e. assume given a finite set L = {l1, . . . , l3q} with a
cover S = {Ci|i = 1 . . . N} by sets Ci that have 3 elements each. Build the
edge-labeled trees T1 and T2 with labels from L ∪ {Φ}, as in fig. 2, where Φ is
some label not in L. We shall see that

i) by computing the TED distance between T1 and T2, we can determine
whether there exists an exact subcover of S , and

ii) if there is an exact subcover, we can retrieve it from the optimal edit path
from T1 to T2.

Let us ignore the tree-structure of T1 and T2 for a second and only consider
the two sets of attributed edges. To find the minimal total cost of editing one set
to become the other, note that the set of edge attributes L1 = x1(E1) in T1 is
contained in the set of edge attributes L2 = x2(E2) in T2. There are N + 2q+ 1
edge attributes in L1 and 4N + 1 edge attributes in L2, so in order to transform
L1 ⊂ L2 into L2, we only need to insert 3N − 2q edges, at a total cost of

bl = (4N + 1)− (N + 2q + 1) = 3N − 2q.

This number bl is a lower bound for the edit distance between T1 and T2.
If there is a solution to the exact 3-cover problem on S, consisting of a set

S ′ = {Ci|i = 1 . . . q} of 3-sets, then the following edit path from T1 to T2
actually has length bl:

– insert an edge with attribute Φ above each triple of elements in some Ci ∈
S ′, i = 1 . . . q.

3 An exact subcover of S is a sub-family S ′ = {Cij}Mj=1 of S such that S ′ is a cover
of L and Cij1

∩ Cij2
= ∅ for all j1 6= j2.
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Fig. 3. The edit path indicated by the colored edge matches has minimal length, even
though the corresponding exact 3-cover problem does not have a solution. Thus, the
proof from integer TED does not carry over to the case of continuous edge attributes.

– insert the remaining 3(N−q) edges with attributes belonging to the remain-
ing N − q yellow subtrees below each of the Φ branches in T1.

Since this edit path has length bl, which is also the lower bound for the
length, the TED distance between T1 and T2 is bl. Thus, a solution to the exact
3-cover problem yields a) a solution to the TED problem and b) a total distance
bl between T1 and T2. If we can show that edit paths that do not yield solutions
to the exact 3-cover problem are longer than bl, then we have proven our claim.
But this is easy, since any mapping from T1 to T2 which does not correspond to
a solution to the exact 3-cover problem must involve either changing some label
li to another label lj , or deleting edges, or both. This has to cost more than bl.

It follows that the computation of integer TED is NP complete.

2.1 Example: Geometric trees with scalar branch attributes

To see that the same idea of proof does not carry directly over to geometric trees,
consider the following set L = {10, 10.5, 11, 11.5, 12, 12.5} and the following cover
of L by 3-sets: S = {{10, 10.5, 11}, {10.5, 11, 11.5}, {11, 12, 12.5}}. Clearly, S
does not have an exact subcover. As above we form trees T1 and T2 as in fig. 3,
where the lengths of edges labeled by elements in L are the corresponding real
numbers, and the lengths of edges labeled with Φ are, say, 1.

A lower bound bl for the edit distance between T1 and T2 is, just like above,
found by just considering sets of edge attributes, forgetting about tree topology
for a second, matching the sets of edge attributes up, and adding the costs of
the entire matching process. Again, all edge attributes from T1 can be matched
to an identical edge attribute from T2, so the only nonzero matching costs come
from the additional edges in T2, namely 2 ∗ ‖Φ‖+ 10.5 + 11 + 11 = 34.5.

We already know that there is no exact 3-cover of S ; nevertheless, we can, in
fact, find an edit path from T1 to T2 of length bl, where the branches indicated
by colors in fig. 3 are matched (deformed to match) and all branches appearing
in black in T2 are inserted. The total cost of deformation edits is 1 and the total
cost of insertion edits is 33.5, giving an edit distance of 34.5 = bl between T1
and T2, although the edit path does not correspond to a solution of the exact
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3-cover problem. It follows that the proof from the integer edit distance does not
carry over to TED for geometric trees.

2.2 Tree edit distance for geometric trees

Building on the original proof described in the previous section, we consider the
class X of all geometric trees (T , x) with edge attributes x : E → RN , N ∈ N.
These edge attributes could, e.g., be edge length, or shape descriptors as in fig. 1.

Define the tree edit distance (TED) between two geometric trees T1 and T2
in X as the smallest possible total cost of transforming T1 into T2 through a
finite sequence of edit operations, which belong to the following three categories:

i) Delete an edge e ∈ E (and correspondingly a vertex from V ), which costs
‖x(e)‖, where ‖ · ‖ is the Euclidean norm,

ii) Insert an edge e to E (and correspondingly a vertex from V ), which costs
‖x(e)‖, and

iii) Deform an edge e ∈ E by changing its attribute from x(e) to a new value a;
this costs ‖a− x(e)‖.

Theorem 1 If N ≥ 2, then computing tree edit distance in X is NP-complete.

Proof. As for the combinatorial edit distance, this is proven by reducing an
arbitrary instance of the exact 3-cover problem to an instance of the edit distance
problem. We prove the theorem for N = 2; the proof trivially generalizes to
N ≥ 2. Denote by T1, T2 the trees in fig. 2, labeled with elements from L and an
additional label Φ, where the li and Φ represent distinct vector edge attributes
of length 1.

As before, we can forget about the tree structure and only consider sets of
edges. The set of edge attributes in T1 is, again, contained in the set of edge
attributes in T2, and the minimal total edit cost of transforming the set of
N + 2q+ 1 edge attributes in T1 to the set of 4N + 1 edge attributes in T2 is the
cost of inserting the rest of the edge attributes from T2, which all cost 1 each.
This gives us total cost

bl = (4N + 1)− (N + 2q + 1) = 3N − 2q.

Again, we need to prove that any edit path that does not correspond to a solution
to the exact 3-cover problem must have length > bl. An edit path that does not
correspond to a solution to the exact 3-cover problem will have to either:

a) map some edge with (nonzero) attribute li to an edge with (nonzero) at-
tribute lj which is not li, or

b) delete some edge, or
c) map the edges from T1 into edges in more than q subtrees Ci in T2.

Note that

a) the cost of mapping li to some lj 6= li has cost ‖li − lj‖, which is > 0 since
the li are distinct. This cost comes in addition to inserting at least 3N − 2q
branches, which gives total cost > 3N − 2q = bl.
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b) this means we have to insert more than 3N − 2q branches, giving total cost
> 3N − 2q = bl.

c) this means we will have to delete some of the branches with attribute Φ from
T1, and thus we have to grow out more than 3N − 2q branches, giving total
cost > 3N − 2q = bl.

Thus, any edit path which does not correspond to a solution to the exact 3-cover
problem has length > bl. This concludes the proof of theorem 1. �

Remark 2 In a), the crucial part is, in fact, that the vectors li are not parallel.
This is to avoid examples like the scalar attribute case in section 2.1.

3 NP completeness for Quotient Euclidean Distance

In order to use geometric tools for statistical analysis of geometric trees, e.g., use
of geodesics in the spirit of manifold statistics, it is useful to construct a space
of geometric trees, and endow it with a geodesic metric. The non-uniqueness
of TED geodesics disqualifies TED as a metric of choice in such a framework.
A more suitable metric is the QED metric on the space of tree-like shapes as
defined by Feragen et al. [6,7], which has been used to study the shapes of airway
trees from human lungs.

By a tree-shape, we shall mean a tree which is embedded in Rd, where d is
typically 2 or 3. In this paper, we are mainly concerned with the case d = 3,
since planar trees (d = 2) typically induce a canonical edge ordering. The space
of tree-like shapes is constructed as follows: Consider a combinatorial rooted,
binary tree T = (V,E, r,<) which is sufficiently large to span all the tree-like
shapes of interest (T could be infinitely large). The space

X =
∏
e∈E

(Rm)n, m = 2, 3, (3)

contains representatives of all tree-shapes spanned by T , whose edges are repre-
sented by landmark point shape descriptors as in fig. 1. That is, a point x ∈ X
corresponds to a map x : E → (Rm)n. Trees with fewer edges are represented
by collapsing (contracting) redundant branches, and higher-order vertices are
represented in a similar fashion, also using collapsed branches, as in fig. 4. Some
tree-shapes will have more than one representative in X, also shown in fig. 4.
In the space of tree-like shapes, these representations are all identified through
an equivalence relation. That is, whenever two points x1, x2 ∈ X represent the
same tree-shape, they are said to be equivalent: x1 ∼ x2. The space of tree-like
shapes ¯̄X is defined as the quotient space of X by the equivalence ∼:

¯̄X = X/ ∼ .

The induced tree-shape space ¯̄X is highly nonlinear, and has self-intersections
that stem from the identifications made by the equivalence. From the Euclidean
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Fig. 4. Higher-order vertices can be represented by the binary tree by collapsing inter-
nal branches, shown as dotted lines.

metric on X, Feragen et al. work with the quotient metric on ¯̄X, which in this
case is called the QED metric. The quotient metric is a standard mathematical
construction [2], which here creates a piecewise Euclidean metric on ¯̄X. Note that
¯̄X geometrically corresponds to a folded Euclidean space. This construction is

actually closely related to the TED metric: If the Euclidean metric on X is
replaced with an l1 product of Euclidean metrics on (Rm)n in the product in
(3), the geometric TED metric studied in section 2 above is retrieved as quotient

metric on ¯̄X [7].

It turns out that computing the QED distance is generally also NP complete:

Theorem 4 Computing QED distances in ¯̄X is NP-complete.

Proof. Just as for TED, the QED shortest paths consist of deleting, inserting
and deforming edges. Using the same two trees T1 and T2 shown in fig. 2, we see
that again, if we disregard the tree structure, the lower bound bl for the QED
distance from T1 to T2 is given by bl =

√
3N − 2q, which can be obtained as

a shortest QED path length if and only if there exists a solution to the exact
3-cover problem, using the same matchings as in the TED case. Again, the non-
parallel property as noted in Rem. 2 is essential. �

Remark 5 As in section 2.1 the proof would not hold if we replaced the edge
shape space (Rm)n by scalar edge descriptors R, because the proof depends on
the non-parallel assumption on attributes.

4 Discussion and conclusion

In this paper we see that the most common distances between unlabeled, un-
ordered geometric trees with vector edge attributes are generally NP complete
to compute, just like the edit distance between purely combinatorial unordered,
unlabeled trees. NP completeness is a result of the exponential search space
which arises when there is no or little formal limitation to the possible mappings
between the trees. For trees with scalar edge attributes, such as edge length, the
proofs of NP completeness do not hold, and we conjecture that computing these
distances is, in fact, also NP complete.
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