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Chapter 1

Introduction

1.1 Thanks

First of all, I would like to thank my supervisor Erik Elfving for suggesting
the topic and for giving valuable feedback while I was writing the thesis.

1.2 The problem

The goal of this Pro Gradu thesis is to show that a topological manifold has
the same homotopy type as some CW complex. This will be shown in several
"parts”:

A) A metrizable ANR has the same homotopy type as some CW complex.

i) For any ANR Y there exists a dominating space X of Y which is
a CW complex.

ii) A space which is dominated by a CW complex is homotopy equiv-
alent to a CW complex.

B) A topological manifold is an ANR.

1.3 Notation and terminology

Just a few remarks on notation: By a mapping (map) I will always mean a
continuous single-valued function.

By a neighborhood of a point z or a subset A of a topological space X
I will always mean an open subset of X containing the point x or the set A
unless otherwise is stated.



A covering, however, does not have to be made up by open sets. If it is,
then I will refer to it as an open covering. Similarly, a closed covering is a
covering which consists only of closed sets.

I will assume that anything which can be found in Vaisala’s Topologia
[-1T is already familiar.

Some notation:

[=[0.1] cR
7t =N=1{1,2,3,.}
No = {0,1,2,3,...}
Ry = [O’OO[

U = disjoint union.

1.4 Continuity of combined maps

This section contains a couple of useful basic lemmas which will be used
many times throughout the thesis.

Reference: [7]

Suppose that {X; : ¢ € I} is a family of subspaces of a topological space
X such that X = (J,.; Xi, and suppose that Y is some topological space.
Assume that for each ¢ € I there is defined a mapping f; : X; — Y such that
if X; N X; # 0 then f; xinx; = [ilx,nx;. We wish to define a new combined
mapping f : X — Y by setting f|X; = f; for all i € I, and the question is
whether such a function would be continuous or not.

Lemma 1.4.1 (The glueing lemma). Assume that I is finite and that
each X; 1s a closed subset of X. Then f is continuous.

Proof. Let A be a closed subset of Y - then f~1(A) = Ujerf; ' (A) is closed
since each f;*(A) is closed in X; and thus in X (X is closed in X) by the
continuity of f; and the union is finite. Hence f is continuous. O

Lemma 1.4.2. If x is an interior point of one of the X;, then f is continuous
m T.

Proof. Note that there is now no restriction on the set I, and the X; are
not necessarily closed. Let x be an interior point of, say, X; and let U be a
neighborhood of f(x) in Y. Since f; is continuous there is a neighborhood
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V' of z in X; such that f(V) = fi(V) C U. Now V is open in X; and so
V = X; NW for some open subset W of X, and hence V' =V N Int(X;) =
W N Int(X;) is an open neighborhood of z in X and f(V') C f(V) C U.
Hence f is continuous in . [

Definition 1.4.3 (Neighborhood-finiteness (also called local finite-
ness)). A family {A, : o € '} of sets in a topological space X is called
netghborhood-finite if each point in X has a neighborhood V' such that V N
Aq # 0 for only finitely many o € o .

Lemma 1.4.4. If {X; : i € I} is a neighborhood-finite closed covering of X,
then f 1s continuous.

Proof. Let x € X be arbitrarily chosen; it now suffices to show that f is
continuous in x. Since {X; : i € I} is neighborhood-finite, there exists
a neighborhood U of z which meets only finitely many X;. Now U N Xj is
closed in U for all ¢ and so by Lemma ( 1.4.1) the restriction f|y is continuous.
Now we may add U to the original collection of X;s; it no longer satisfies
the assumptions of this lemma but since x is an interior point of U, f is
continuous in x by Lemma ( 1.4.2) Now f is continuous in all of X since x
was arbitrarily chosen.

[]

1.5 Paracompact spaces

The goal of this chapter is to prove that a metrizable space is paracompact.
Reference: [1]

Proposition 1.5.1. Let {A, : a € &/} be a neighborhood-finite family in a
topological space X. Then:

(A) {A, : a € &} is also neighborhood-finite.

(B) For each % C o | J{As : B € B} is closed in X.

Proof. (A) Let € X. Then there is a neighborhood U(z) such that A, N
U(x) = 0 for all except finitely many «. If A, NU(x) = () for some «,
then A, C U(z)¢, and since U(z) is open it follows that A, C U(z)¢ and so
Ay NU(x) =0 and so (1) holds.

(B) Let B = Uﬁegjzﬁ. Now, if 2 ¢ B, then by (A) there is a neighbor-
hood U of & which meets at most finitely many Ag, say Ag,, ..., Ag,. In that
case, U N, Z;i is a neighborhood of z not meeting B and hence B¢ is
open.

[]



Proposition 1.5.2. Let {E, : a« € &/} be a family of sets in a topological
spaceY, and let {Bg : § € A} be a neighborhood-finite closed covering of Y.
Assume that each Bg interesects at most finitely many sets E,. Then each E,
can be embedded in an open set U(E,) such that the family {U(E,) : o € &/}
s neighborhood-finite.

Proof. For each o define U(E,) =Y —J{Bs : BsNE, = 0}. Each U(E,) is
open by 1.5.1 (B), since {Bg} is a neighborhood-finite family of closed sets.
We show that {U(E,) : « € &7} is neighborhood-finite:

It follows from the definition of U(FE,) that Bs NU(E,) # 0 < Bsg N
E, # (. Therefore, since each Bg, intersects at most finitely many F,,
the set Bpg, intersects at most finitely many U(E,). By the neighborhood-
finiteness of {Bg} any y € Y has a neighborhood V' intersecting only finitely
many Bpg,i = 1,...n, and hence V C |J;_, Bs, which as a finite union
intersects only finitely many U(F,). Since E, C U(F,) for all a then the
claim holds. O

Definition 1.5.3 (Refinement of a covering). A refinement of a covering
{As 1 a € '} of a topological space Xis a covering {Bg : 3 € B} such that
for every set Bg where 3 € 9 there exists a set A, where a € </ such that
Bﬁ C A,.

Example 1.5.4. A subcovering is a refinement of the original covering.

Definition 1.5.5 (Paracompact space). A Hausdorff space Y is paracom-
pact if every open covering of Y has an open neighborhood-finite refinement.

Example 1.5.6. A discrete space is paracompact.
A compact space is paracompact.

Theorem 1.5.7 (E. Michael). Let Y be a regular space. The following are
equivalent:

(A) Y is paracompact.

(B) Each open covering of Y has an open refinement that can be decom-
posed into an at most countable collection of neighborhood-finite families of
open sets (not necessarily coverings).

(C) Each open covering of Y has a neighborhood-finite refinement, whose
sets are mot necessarily open or closed.

(D) Each open covering of Y has a closed neighborhood-finite refinement.

Proof. 7(A) = (B)”
Follows from the definition of paracompactness.



"(B) = (C)
Let {Ug : f € A} be an open covering of Y. By (B) there is an open
refinement {V, : v € ¢} where ¥4 = (J,o @, is a disjoint union such
that{V, : o € 4,} is a neighborhood-finite family of open sets (but not
necessarily a covering).

For each n € N, let W,, = |J,c., Va- Now {W, : n € N} is an open cov-
ering of Y. Define 4; = W; —J,_; W;. Then {4; : i € N} is a covering, since
Uien 4i = Ujen Wi = Y and so {A;} is a refinement of {W;}. Furthermore,
{A;} is neighborhood-finite, since the neighborhood W, of y € Y, where
n(y) is the first ¢ € N for which y € W;, does not intersect A; whenever

i >n(y).

Claim: Now {A, NV, : a € #,,n € N} is a refinement of {Ug}.
Proof: Let y € Y. Then there exists n € N and a € 7, such that y € V,.
Let ng be the smallest such integer n. Then y € V,, for some oy € 7,,, and
y € Wy, but y ¢ U;c,,W;; hence y € A,, and thus y € A,, N V,,. Thus
{A, NV, :a€ o, n e N}is a covering, and clearly it is a refinement. [J

Moreover it is neighborhood-finite since each y € Y has a neighborhood
intersecting at most finitely many A,,, and for each n the point y has a neigh-
borhood intersecting at most finitely many V,, where a € 47,.

"(C) = (D)” Let & be an open covering. To each y € Y, associate a
neighborhood U, € & of y. Now, since Y is regular, there exists disjoint
neighborhoods of y and U - let Vj, be the neighborhood of y. It follows
that y € V,, € V,, C U,. The family {V, : y € Y} is an open cover-
ing of Y'; hence, by the assumption it has a neighborhood-finite refinement
{A, : y € Y}. By Proposition ( 1.5.1) {4, : y € Y} is also neighborhood-
finite, and A, C V,, C Uy; hence {A, : y € Y} is a closed neighborhood-finite
refinement of /. Hence every open covering of Y has a closed neighborhood-
finite refinement.

7(D) = (A)” Let % be an open covering of Y, and let & be its closed
neighborhood-finite refinement. Now for each y € Y there exists a neighbor-
hood V,, which meets at most finitely many sets £ € &. Using {V,, : y € Y},
find a closed neighborhood-finite refinement %. Since each B € % inter-
sects at most finitely many sets F € &, then by Proposition ( 1.5.2) each
E € & can be embedded into an open set G(E), such that {G(E) : E € &} is
neighborhood-finite. If we associate to each £ € & aset U(E) € % such that
E C U(FE), then {U(E)NG(E)} is a neighborhood-finite open refinement of



U .
]

Definition 1.5.8 (Star, barycentric refinement, star refinement). Let
3 be a covering of a space Y. For any B CY, the set | J{U, € U : BNU, # 0}
is called the star of B with respect to i, denoted St(B, ).

A covering B is called a barycentric refinement of the covering U if the
covering {St(y,B) : y € Y} refines 4.

A covering B = {Vj : f € B} is a star refinement of the covering i if
the covering {St(Vs,B) : 5 € B} refines 4.

Note that if B is a star refinement of i then it is also a barycentric
refinement, since for each y € Y there exists a set V' € B such that y € V,
and clearly St(y,B) C St(V,B) C U for some U € L.

If every covering of a space Y has a barycentric refinement, then it also
has a star refinement:

Proposition 1.5.9. Let U be a covering of a space Y. A barycentric refine-
ment ® of a barycentric refinement B of U is a star refinement of L.

Proof. Let Wy € ®, and choose some yy € Wy. For each W € 2 such that
W N Wy # 0, choose a z € WNW,. Then WUW, C St(2,D) C V for
some V € B. Because, then, y, € V it follows that V' C St(yo,B) and
so St(Wy,®) C St(yo,B) C U for some U € 4, since B is a barycentric
refinement of 4. m

Thus a covering 4 has a star refinement if and only if it has a barycentric
refinement.

Theorem 1.5.10 (Stone). A T} space Y is paracompact if each open cov-
ering has an open barycentric refinement.

Proof. Let 4 = {U, : @ € &/} be an open covering of Y. We will show that
it has a refinement as required in Theorem ( 1.5.7) (B).

Let 4* be an open star refinement of Y (exists by Proposition ( 1.5.9)),
and let {4, : n > 0} be a sequence of open coverings such that each &I,
star refines 4, when n > 0, and 4, star refines U*.

Define a new sequence of coverings:

%1 :ill
By = {St(V, ) : V € By (=)}

B, = {St(V,,): V € B,_;}



Claim i): Fach covering {St(V,4,) : V € B, } refines .
Proof: n =1 By definition, since 8, = {; and ; star refines .

n > 1 Assume that the claim holds for n = k — 1. Let V € B, =
V = St(Vy,Ug) for some Vo € By_1. Denote by {V; : i € I} the set of
neighborhoods V; € U, such that V; NV # (). Then

= (UVJ) where jeJ< Vel and V;NV;#0 forsome i€l
jeJ
If V;NV; # 0 for some i € I then , because 4, star refines {;_;, there
exists V' € U;_; such that

V;UV; C St(V;,4y) C V'
and since V; NV # () then

VonV' o Wpn(V;uVi)=VonV)u(vonVy) #0,

hence V' C St(Vp, U—1), and so V; C V' C St(Vy, Yi_1).
Thus we have shown that St(V, ;) = St[St(Vo, Ux), he] C St(Vo, Up—1).

From the induction assumption it then follows that St(V, Uy) C St(Vp, Up—1) C
U for some U € Ly, and so {St(V,4,) : V € B, } refines L. O

Claim i1): FEach B, is an open refinement of L.
Proof: Since the ; are open coverings, the B,, are trivially open coverings.

n = 1 By definition B, = i, star refines iy, so B, is an open refinement
of Uy.

n > 1 Assume that 9B,,_; is an open refinement of Uy and that V' € B,,_;.
Then

St(V, i) = U Ui
iel
where i € I & U; € U, and ,U; NV # . Since 4, refines 4, _; then each
U C Vi € U, 4 and St(V,4,,) C St(V,4,_1), and by the previous claim,
St(V,4,—1) C U for some U € iy and so B, = {St(V,ih,) : V € B,_1}
refines y. O



Now well-order Y and for each (n,y) € N x Y define

En(y) = St(?/? %n) - U{St(za %n-i-l)}'
z<y
Claim 11): § = {E.(y) : (n,y) € ZT x Y} is a covering of Y, and §
refines U*.
Proof: Given p € Y, the set

A={zeY:pel|JstzB)}
i=1

is nonempty, since p € A. If y is the first member of A, then p € St(y, B,,)
for some n € N and p ¢ St(z,B,41) for all z < y. Hence p € E,(y), and
thus § is a covering.

Furthermore, if V € § then V = E,(y) for some (n,y) € N x Y and thus
V C St(y,B,) C St(y,Uy) since B, refines LUy and St(y, i) C St(U,LUy) C
W where y € U € Uy and W € U*, since i, star refines U*. Hence § refines
U 0O

Claim v): Each U € 1 can meet at most one E,(y).
Proof: tU € 4,41 is such that U N E,(y) # 0 then there exists a set V € B,
such that y € V and U NV # ), and therefore y € VUU C St(V,U,41) €
B11. 1t follows that U C St(V,4,41) C St(y,Bp41). Hence, if U meets
E,(y) then it cannot meet E,(p) for p > y. O

Denote W,,(y) = St(E,(y), Upi2).

Claim v): 20 = {W,(y) : (n,y) € Nx Y} is an open covering of Y.
Proof: Let p € Y. Now by Claim iii) there exists (n,y) € Z*T x Y such that
p € E,(y). Since i, 5 is a covering there exists a set U € i, such that
p € U and hence U N E, (y) # 0 which gives U C St(E,(y),,12) and hence
p €U C W,(y). Moreover, 20 is open since i, 1o is open. [

Claim vi): 20 refines .
Proof: 1t V € 20 then V = St(E,(y),Ups2) for some (n,y) € ZT x Y.
Since by Claim iii), § refines {* we have St(E,(y),,12) C St(V, 4, o) for
some V' € U*. Furthermore, since 4,5 refines U* we have St(V,i,.2) C
St(V, ") C U for some U € U since U* star refines Y. [J

Claim vii): The family 20,, = {W,(y) : y € Y'} is neighborhood-finite for
fixed n € N.
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Proof: Let U € 4,,,5. Since

UnNW,(y) #0 & UNSHE,(y),%,o) # 0
& Ve, st VNU#AD and VNE,(y) #0
& Eu(y) N SHU, 8hyp2) # 0

and because St(U, U, 12) C Uy € i1 where Uy meets at most one E,(y),
it follows that U can meet at most one W,,(y). O

Hence, since 20 = (J, .y 20, we have proved that the covering 20 satisfies
the conditions in (B) in 1.5.7, and it remains to show that the space Y is
regular.

Claim viii): The space Y is reqular.

Proof: Let B be a closed subset of Y and let y € Y — B. Since Y is T,
{y} is closed in Y. Hence 4 = {Y — y, B°} is an open covering of Y. Let B
be an open star refinement of Y. Then St(y,B) and St(B,*B) are disjoint
neighborhoods of y and B:

Assume that there are neighborhoods V and V' in 98 such that y € V,
BNV'#Qand VNV’ # . Then y € St(V,B) and V' C St(V,B) and thus
St(V,B) LY —y and St(V,B) € B¢ hence B is not a star refinement of 4l,
which is a contradiction.

Hence Y is regular, and it follows from 1.5.7 (B) that Y is paracompact.

O

Definition 1.5.11 (Locally starring sequence). Let 3 = {U, : a € o/}
be an open covering of Y. A sequence {ih, : n € N} of open coverings is

called locally starring for U if for each y € Y there exists a neighborhood V
of y and an n € N such that St(V,W,) C U, for some a € .

Theorem 1.5.12 (Arhangel’skii). A T} space is paracompact if for each
open covering Y there exists a sequence {4, : n € N} of open coverings that
is locally starring for L.

Proof. Let $f = {U, : a € &/} be a covering of Y and {4, : n € N} a
sequence of open coverings that is locally starring for 4. We can assume that
i, 41 refines Y, for all n € N. (If not, replace i,y with {U; NU; : U; €
i, Uj S LLH_H}.) Let

B={VopeninY|In:[VCUei]A[St(V,U,) CU, for some a € &/]}.

11



For each V' € 9B, let n(V') be the smallest integer satisfying the condition.

Claim: ‘B is an open covering of Y.

Proof: B consists of open sets by definition. If y € Y then since {i,}
is locally starring for $ there exists a neighborhood V(y) of y such that
St(V(y),U,) C U, for some n € Nya € /. Since Y, is a covering of Y
there exists a set U € i, such that y € U. Let W = V(y) NU # 0. Then
St(W,sk,) C St(V(y),,) C U, where « € o and W C U € ,,. The set W
is open as the intersection of two open sets; hence y € W € B, and hence B
is a covering of Y. [

Claim: The covering B is a barycentric refinement of L.
Proof: For some y € Y, let n(y) = min{n(V) : (y € V) A (V € B)}, and let
Vo € B be such that y € Vj and n(Vy) = n(y). For any V € B where y € V
we have n(V') > n(y), so

St(y,8) < Sty 1) 7 > ()},

Since ;41 refines 4; it follows that St(y, B) C St(y, Uny)) = St(y, uve)) C
U, for some a € o&/. Hence B is a barycentric refinement for 4 [J.

It follows from Theorem ( 1.5.10) that Y is paracompact.

Theorem 1.5.13 (Stone). A metrizable space is paracompact.

Proof. We will prove the theorem by finding a sequence of open coverings
which is locally starring for all open coverings of the metrizable space X, and
using 1.5.12.

Let d be a metric for the space X and denote

iBn:{B(x,%):xeX} vV neN.

Given an open covering {U, : @« € &/} and a point x € X, choose an
n € N such that d(z,US) > % > 0. By letting V(z) = B(x,%), then

St(V(z),Bsn) C Us. (Ify € St(V(x),Bs,) and z € V(x) then d(z,y) < &
and so

1 2 1
< =< c
d(z,y) < d(z,z) +d(z,y) < T3, =S d(x,Uy)

and hence y € U,.)

12



Thus {B,} is locally starring for any open covering of X. By Theorem
( 1.5.12), X is paracompact.
O

1.6 Properties of normal and fully normal spaces

Reference: [1], [2], [6]

This section contains some useful properties of normal spaces plus the
definition of and some lemmas concerning fully normal spaces, which will
come in handy later.

A covering {V) : A € A} is point-finite if for each point y € Y there
are at most finitely many indices A € A such that y € V). An interesting
result is that normal spaces are characterized by the ”shrinkability” of open
point-finite coverings:

Lemma 1.6.1. Let X be a T topological space. Then the following properties
are equivalent:

a) X is normal.

b) Let a« = {V) : A € A} be a point-finite covering of a normal space X,
then « has an open refinement 3 = {Uy : X € A} such that Uy C V)
for each X € A, and Uy # O whenever Vy # ().

Proof. 7 (a) = (b)”
Well-order the indexing set A and for each x € X, denote

h(z) = max{\:x € V) }.

Now, h(z) is well defined since z is only contained in finitely many V.

Well-order Z(X) - we will define a map ¢ : A — Z(X) by transfinite
construction such that Uy = ¢(\) is an open set for all A and

i) Uy C Vi, Uy # 0 whenever Vy # 0.
i) {Uy:a <A} U{Vz:0> A}is a covering of X for all A € A.

Assume that ¢(«) is defined for all & < A, and note that then

(Us:a<A}U{Vs: 82> )\)

13



is a covering of X.
It follows that

F=Xx\[JU.ulJVslcW
a< B>

and, since F'is the complement of an open set it is closed and hence by
the normality of X there is an open set U such that F c U c U C V), (If
F = {) then replace F' with a point in Uy). Let ¢(\) = Uy be the first such
set in the well-ordering of &?(X). Then, clearly, the conditions i) and ii) are
satisfied by the new family.

Hence we have a uniquely defined family of sets Uy such that U, C
Vi ¥V A € A. It remains to show that {U, : A € A} is a covering of X.

Assume that x € X is an arbitrary point; then z ¢ Uﬁ>h(x) V3 and hence
by the condition ii) z € U, for some o < h(x).

2 (b) # (a)”
Let A and B be disjoint closed sets in X. Then {A° B¢} is a point-finite
covering of X, and so there is an open refinement {Uy, U,} such that U; C A°
and U, C B°. Then U] is a neighborhood of A, U, is a neighborhood of B,
and

U NUy= (T, UT,)°=X=0
and hence X is normal.
O]

Definition 1.6.2 (Fully normal space). A Hausdorff space X is fully nor-
mal if every open covering has an open barycentric refinement (see Definition

(1.5.8)).

Proposition 1.6.3. A fully normal space is normal.

Proof. Let A and B be disjoint closed subsets of X - now {A¢, B} is an open
covering of X.

Let { = {U; : j € J} be an open barycentric refinement of {A¢, B°}.
Define

Va=|J{U;j:jeJand ANU; # 0}

Vs = J{U;:j € Jand BNU; # 0},

now V4 and Vg are open neighborhoods of A and B, and we will see that
they are disjoint:

14



Suppose that x € U;, NU;,, where U;, N A # 0 and U;, N B # (). Then
St(z, ) ¢ A and St(z,4) € B¢ and so i is not a barycentric refinement,

and we have a contradiction.
O

Theorem 1.6.4. A metrizable space is fully normal.

Proof. Let X be a metrizable space, and let &t = {U; : ¢ € I} be an open
covering of X. Since X is metrizable it is paracompact, and hence i has
a neighborhood-finite open refinement U = {V; : j € J}. A neighborhood-
finite covering is certainly point-finite, and so by Lemma ( 1.6.1), since a
metrizable space is normal, U has an open refinement 20 = {W, : j € J}
such that Wj CV,forall jeJ.

Now each x € X has a neighborhood U, which intersects only finitely
many V;. Denote by J(x) the set of indices j € J such that = € Wj and
let K (x) be the set of indices k € J for which U, intersects V; but x ¢ Wy.
Then both J(z) and K (z) are finite.

Denote

B,=U,n [ Vin [] Wi
jE€J () keEK (z)

B ={B, :x € X} is an open cover of X since the B, are finite intersec-
tions of open sets containing x, and it is actually a barycentric refinement of
M

Let x € X; now there is a W; which contains x, since 20 is a covering of
X. If z € By then W, intersects B, and so j ¢ K(y) by the definition of
B,. Since x € B, N W; we have U, NV, # 0 and so j € J(y) since j ¢ K(y)
and so B, C V;. Hence St(z,8) C V; C U, for some i € [ and so B is a

barycentric refinement of 1.
O

15



Chapter 2

Retracts

2.1 Extensors and Retracts

This section contains the basic definitions and properties of the spaces called
absolute extensors/retracts (AE/AR) and absolute neighborhood extensors/retracts
(ANE/ANR). In a later chapter we will see that in metrizable spaces the con-

cepts of AE and AR (or ANE and ANR) are essentially the same.

Definition 2.1.1 (Weakly hereditary topological class of spaces). A
weakly hereditary topological class of spaces (WHT) is a class € of spaces
satisfying the following conditions:

(WHT 1) € is topological: If € contains a space X then it contains
every homeomorphic image of X.

(WHT 2) € is weakly hereditary: If € contains a space X then it con-
tains every closed subspace of X.

Example 2.1.2. The following classes of spaces are WHT's:
= class of all Hausdorff spaces

A = class of all metrizable spaces

JH = class of all compact spaces

N =class of all normal spaces

Definition 2.1.3 (AE and ANE). A closed subspace A in a topological
space X has the extension property in X with respect to a space Y if and
only if every map f : A —Y can be extended over X.

A closed subspace A of a topological space X has the neighborhood ex-
tension property in X with respect to 'Y if and only if every map f : A —Y
can be extended over some open subspace U C X. (U may depend on f).

Let € be a WHT.
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An absolute extensor (AE) for € is a space Y such that every closed
subspace A of any space X in € has the extension property in X with respect
toY.

An absolute neighborhood extensor (ANE) for € is a space Y such that
every closed subspace A of any space X in € has the neighborhood extension
property in X with respect to Y .

Definition 2.1.4 (AR and ANR). Let € be a WHT.

A retract of a topological space X is a space A C X such that the identity
map Id: A — A has a continuous extension f : X — A.

A neighborhood retract of a topological space X is a space A C X such
that A is a retract of an open subspace U C X.

An absolute retract (AR) for the class € is a space Y € € such that
every homeomorphic image of Y as a closed subspace of a space Z € € is a
retract of Z.

An absolute neighborhood retract (ANR) for the class € is a space Y € €
such that every homeomorphic image of Y as a closed subspace of a space
Z € € 1s a neighborhood retract of Z.

The following proposition trivially holds:

Proposition 2.1.5. Every AR for a« WHT € is an ANR for €.

Let 2 be a WHT contained in € and let Y be a space in 9. IfY is an
ANR/AR for € thenY is an ANR/AR for 9.

If Y = {p} is a singleton then Y is an AR for every class € which contains
a singleton space (and hence also containsY ). O

Another well-known result is Tietze’s extension theorem:

Theorem 2.1.6 (Tietze’s extension theorem). The interval I = [0,1] is
an AE for the class A of all normal spaces. [J

The following is also a useful result:

Proposition 2.1.7. Any topological product of AEs for a class € is also an
AFE for €.

Proof. Let {Y; : ¢ € I} denote a family of AE’s for the class €, and let YV
denote the topological product of the Y;. Assume that X is an element of the
class €, that A is a closed subspace of X and that f: A — Y is a mapping.
For all 7 € I define the canonical projection p; : Y — Y; and consider the
composition

piof: A=Y,
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Since Y; is an AE for € there is an extension g; : X — Y;. We may define
a mapping g : X — Y by setting

pi(9(x)) = gi(z) Vo € X
It follows that g|4 = f and so Y is an AE for . 0

We may generalize Tietze’s extension theorem using the proposition above:

Corollary 2.1.8. Any topological power of the unit interval I, such as I™ or
the Hilbert cube, is an AFE for the class A of normal spaces. [

The following will also prove useful:

Corollary 2.1.9. The n-cell B", the standard n-simplex A, and any closed
n-simplex o of any polytope is an AE for N .

Proof. All of the spaces mentioned above are homeomorphic to 1. n

2.2 Polytopes

References: [5], [§]

Polytopes are a certain kind of spaces which have nice topological prop-
erties and which will be used extensively when dealing with coverings for
instance when proving results about retracts. This section contains the basic
definitions and properties of polytopes.

Definition 2.2.1 (Simplicial complex). An abstract simplicial complex
K is a pair (V,X), where ¥V is a set of elements called vertices and ¥ is a
collection of finite subsets of ¥ called simplexes with the property that each
element of V lies in some element of ¥ and, if o € X then for every subset
o' C o it is true that o' € X. A simplex containing exactly the vertices
ag, 4y, ...a, is sometimes denoted {ag, ay, ..., a,}.

An abstract simplicial complex is infinite if the set ¥ is infinite. If it is
not infinite, it is finite. The dimension of a simplex o is defined by

dim(o) = (number of vertices in o) — 1,

and the dimension of an abstract simplicial complex K is

dim(K) = sup{dim(o) : 0 € ¥}.

If L is a simplicial complex such that each vertex of L is also a vertex of
K, and each simplex of L is also a simplex of K, then L is a subcomplex of

K.
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For most purposes we will in fact denote by K also the sets of vertices of
K and the set of simplexes of K, so that in the definition of the simplicial
polytope | K| associated to K below, the domain of the map o : K — I actually
the set ¥ of vertices of K. Similarly, a vertex v of K is often denoted as a
vertex v € K and a simplex o of K is often denoted as a simplex o € K.

Example 2.2.2. If 0 is a simplex, then the set & of all proper subsimplices
of o is a simplicial complex.

Remark 2.2.3. Note that a simplicial complex of dimension oo is infinite,
while an infinite complex may have finite dimension. For example, the sim-
plicial complex (Z,{{n} : n € Z}), where the only simplices are the vertices
themselves, is an infinite complex of dimension 0.

Example 2.2.4 (The nerve of a covering). Let X be a topological space
and let 4 = {U, # 0 : a € o} be a covering of X. Now let each o € of
be a verter in a simplicial complexr denoted A which is constructed in the
following way:
{ag, ax, ..., } is a simplex of A if and only if Uy, N Uy, N ... N U, # 0.

It is clear from the definitions that A is a simplicial complex, and it is
called the nerve of the covering .

If we let K be any nonempty simplicial complex, we may define a new
set | K| which is the set of all functions

a: K —1
such that

(a) For any a € |K|, {v € K : a(v) # 0} is a simplex of K - in particular,
a(v) # 0 for only finitely many v € K.

(b) For any a € |K|,) . a(v) =1

The set | K| is called the simplicial polytope associated with the simplicial
complex K, and if L is a subcomplex of K, then |L| is a subpolytope of |K|.

The polytope associated with the nerve of a covering is called the geo-
metric nerve of the covering.

In order to define a topology on a given polytope we need the notion of
a geometric simplex.
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Definition 2.2.5 (Geometric simplex, the standard n-simplex in
R, Let A = {ag,ay,...ar} be a set of geometrically independent points
in R", i.e. no (k— 1)-dimensional hyperplane contains all the points. The
geometric k-simplex in R" (denoted o*) spanned by A is the convex hull

k k
{Z Aia; where each \; € Ry and Z A =1}
i=0 1=0
of the set A, and the points of A are the vertices of o*. The simplex is
also denoted o* = (ag, ay, ...ay). The set of all points x € o* for which each
A; > 0 is the open geometric k-simplex spanned by A. A simplex o™ is a face
or a subsimplex of the simplex o* if all the vertices of o™ are also vertices
of o*.
The standard n-simplex in R**!, denoted A, is the geometric simplex
spanned by the standard vectors e; = (0, ...,0,1,0,...,0) € R™" with the 1 in
the i place, i = 0,1, ..., n.

If o is a simplex in a simplicial complex K, then the corresponding closed
simplez |o| is a subset of | K| defined by

lo| ={a € |K|:a(v)#0=v €}

Proposition 2.2.6. For every q-simplex o in a simplicial complex K, the
corresponding closed simplez |o| is in 1 —1 correspondence with the standard
q-simplex A, in RITL.

Proof. Let vy, ...,v, be the vertices of o and let ry, ..., 7, denote the vertices
(1,0,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1) of A,. Define a function f : A, —
|o| by

q
f: Ztm — where av))=t;, ¥V i=0,1,..,4q.
i=0

The points t; = a(v;) are called the barycentric coordinates of the point
a in |o|. Next define a function g : || — A, by

q
g:a— Za(vi)ri V o ac€lol
i=0

It is clear that f o g = id|,| and go f = ida, and hence f is a bijection.
[
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Now that we have a bijection f between each closed simplex |o| and the
standard n-simplex A,, in R™™! for some n € Ny, we may define a topology
on |o|. Assume that A, has the Euclidean topology for all n € N (induced
from the usual topology on R™"*! as a subset). Then let a subset U be open
in the closed g-simplex |o| if and only if f(U) is open in A, - that is, we let
|o| have the only topology which makes f a homeomorphism.

We then say that |o| has the Euclidean topology.

Next we wish to define a topology on the polytope | K| associated with a
simplicial complex K, and we will require the topology to satisfy two condi-
tions:

(PT1) Every subpolytope of |K| is a closed subset of |K].

(PT2) Every finite subpolytope |L| of |K|, considered as a subspace of
| K|, has the Fuclidean topology, or in other words, its topology equals the
subset topology when |L| is considered to be a subset of the closed simplex
|o|, where o is a simplex whose vertices are all the vertices of L (That is, o
is not necessarily a simplex of K.)

One topology which fulfills these requirements is the Whitehead topology
T (usually referred to as the weak topology), which is defined as follows:

A set U C |K]| is open (or closed) if and only if, for every closed simplex
|o| of | K|, the intersection U N |o| is an open (or closed) subset of |o|. This
is then the topology coinduced by the inclusion maps i, : |o| — |K| for each
simplex o of K.

Always when talking about simplicial polytopes, it will be understood
that it has the Whitehead topology unless otherwise is stated.

Proposition 2.2.7. A subpolytope |L| of a simplicial polytope | K| is a closed
subset of |K|. In particular, a closed simplex |o| is a closed subset of |K]|.

Proof. Let o be a simplex in K; now, for each simplex ¢’ in L the intersection
o' N o is either empty or a subsimplex of ¢. Since o contains only finitely
many subsimplices, the set

{c'Nco:c¢"isasimplexin L,c'No #0} = {o;:i€ 1}
is a finite set of simplices.

Hence |o| N |L| = ;¢ |oi| where [ is a finite index set.

Now, if A, is the standard n-simplex homeomorphic to |o| then each |o;]
is homeomorphic to some subsimplex of A,,, which is a closed subset, and
hence |o;| is a closed subset of |o|. Hence, as a finite union of closed subsets,
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lo| N |L]| is a closed subset of |o|.

Hence |L| is closed in |K]|.

It follows that .7, fulfills the condition (PT1).

Proposition 2.2.8. Let | K| be any simplicial polytope, and let |L| be a finite
subpolytope of |K|. Then |L| has the Euclidean topology.

Proof. Denote by vy, v, ..., v, the vertices of L and denote by o the simplex
spanned by the v; (not necessary a simplex of K). Now o is homeomorphic
to the standard n-simplex A, in R**!. The topology on each simplex o € |L|
is then the relative topology from R

Now if U C |L]| is open in the "relative” topology on |L| from R, then
it is clear that U is open in |L| with the Whitehead topology. Conversely, if
U C |L| is open in |L| with the Whitehead topology then U N |o| is open in
|o| for each closed simplex |o| € |L|. Then |L|\ U = |J;_, |o:| \ U which is
closed in the relative topology since |o;| \ U is closed in the relative topology
for each i € {1,...,n} where the o; are the simplices of L. Hence U is open
in |L| with the relative topology, and hence the relative topology from o, or
in other words, the Euclidean topology on |L|, and the Whitehead topology
on |L| are the same. O

Now we have shown that .7, fulfills (PT2) as well.

Proposition 2.2.9. Let the simplicial polytope | K| have the Whitehead topol-
oqy, and let X be a topological space. A function

frlKl =X

is continuous if and only if f|s : |o| — X is continuous for for every
o€ K.

Proof. =" Trivial, since the restriction of a continuous map is always con-
tinuous.
7<«<" Let U be an open subset of X. Now

FHu) ol = (flie) (V)

is open in |o| for every o € K, and hence f is continuous.
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Definition 2.2.10 (The metric topology). Another topology which also
satisfies (PT 1-2) is the metric topology 7. We may define a metric d on
|K| by setting

d(a.f) = D la(v) = B2
veY
The polytope associated to K with the metric topology will from now on be
denoted | K|y, while |K| is used for the polytope with the Whitehead topology.

Clearly, the topology of a closed simplex as a subset of a simplicial poly-
tope induced by the metric topology is the Euclidean topology. Hence, if a
subset A of a simplicial polytope |K| is open in the metric topology, then
AN |o|is open in |o| for every closed simplex |o| in |K | and hence A is open
also in the Whitehead topology. It follows that .7; C 7.

The following proposition is then obvious:

Proposition 2.2.11. The identity map

id : \K] — \K\d
18 continuous.

Corollary 2.2.12. A simplicial polytope |K| with the Whitehead topology is
a Hausdorff space.

Proof. The metric space | K |4 is Hausdorff, and the identity map Id : |K| —
|K |4 is continuous - hence since two points a # b have two disjoint open
neighborhoods in the metric topology, the same two disjoint sets are also
neighborhoods in the Whitehead topology. [

We have shown that .7; C .7, but the opposite is not generally true -
consider for instance the simplicial complex K = (Ny, X) where ¥ = {{n} :
n € No} U {{0,n} :n € N}. Now if o™ is the closed simplex of the polytope
| K| corresponding to the abstract simplex {0,n} then ¢" is homeomorphic
to [0,1] by the homeomorphism that takes each point to its barycentric co-
ordinate with respect to the vertex n. We may call this homeomorphism A,,.
Now, if we denote

A= Jn! ([o, %))

neN
then A is open in the Whitehead topology since AN o™ = h,* ([0,2)) is

‘n

open in ™ and AN {n} is either empty or {n} (and hence open in {n}) for
each O-simplex {n} of |K|.
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Figure 2.1: The set underlying the polytope |K| may be visualized like this.

Figure 2.2: The subset A of |K| then corresponds to a set which one may
visualize like this.

However, A will not be open in the metric topology .7; on | K| since for
each r > 0

Bd(O7T) = U h;1 ([O,T))

neN

will contain points from |K|\ A. It follows that .7, € J,.
Proposition 2.2.13. For a simplicial complex K, the polytope | K| is normal.

Proof. Claim: |K| is normal < if A is a closed subset of |K| then any map
f:A— 1T can be continuously extended over |K]|.

2 :>77
By Tietze’s extension theorem.

b2 <:77
Let A and B be two disjoint closed subsets of |K|. Define a function
f:AUB — I by setting

=Y 15

Now f is continuous, and so by the assumption it has a continuous ex-
tension g : |K| — I. Define
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1 L
V=g (05D,

U =97 (5.1

then V and U are disjoint neighborhoods of A and B, respectively. Hence
| K| is normal, and the claim holds. O

To show that |K| really is normal we then show the right hand side of
the equivalence above. Let A be any closed subset of the simplicial polytope
|K|, and let f : A — I be any continuous map. By Proposition ( 2.2.9) a
continuous extension over |K| exists if and only if there exists a family of
maps {f, : |o| — I : o is a simplex in K} such that

(a) if o’ is a face of o, then f,|0’ = f,
(b) fol(Anlal) = FICAN[o]).

We will use induction on the dimension of o to prove that such a family
exists.
If dim(o) = 0 then |o| is a singleton set, and so

- if |o| C A then define f, = f| |o|

- if |o] € A then f, may take any value.

Let ¢ > 0 and assume that f, is defined for all simplexes o of dimension
less than ¢, such that (a) and (b) hold. Let o be a g-simplex, and define a
function f, : || U (AN |o|) — I by setting

filio = for if 0’ is a proper face of o

fol(An|al) = fl(AN]o])
where ¢ is the simplicial complex consisting of all proper faces of 0. Now
{fsr : dimo’ < ¢} is a family of maps satisfying both conditions (a) and (b),
and hence f! is a continuous map
lolu(Anie]) — 1,

where |6|U(AN|o|) is a closed subset of |o|. Since || is homeomorphic to
some standard n-simplex A,, which is, as a closed subset of the normal space
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R™, normal, it follows that |o| is also normal and so by Tietze’s extension
theorem, there exists a continuous extension

foilo|—1

of fI.
Thus f, satisfies the conditions (a)-(b) and so the theorem is proved.
[

Definition 2.2.14 (Open simplex). Given a simplex o in a simplicial
complex K, the open simplex (o) in |K| associated with o is the set

(oy={a€|K|: av)£0svedar}

As noted in Proposition ( 2.2.6) and the following discussion, for each
closed simplex |o| in | K| there is a homeomorphism

f:A, — o] for some n € N.

Then, clearly, (o) = f(Int(A,)).

An open simplex does not have to be open in |K| - for instance, if K has
three vertices and it contains all possible simplexes then |K| is homeomorphic
to Ay and if ¢ is a simplex containing two vertices then (o) is homeomorphic
to one of the sides of Ay minus the vertices - which is clearly not open in A,
and hence (o) is clearly not open in |K].

However, since (o) = |o]| \ |¢|, the open simplex (o) is open in |o].

Each point o € |K| belongs to a unique open simplex - (s), where s =
{v € K : a(v) # 0}. Thus the open simplexes form a partition of |K]|.

Proposition 2.2.15. Let A C |K|. Then A contains a discrete subset which
consists of exactly one point from each open simplex which meets A.

Proof. For each simplex o € K such that AN (o) # 0 let o, € AN (o) and
let

A" ={a, : An (o) # 0}

Since any simplex contains only a finite amount of subsimplexes, a closed
simplex can only contain a finite subset of A’ - thus every subset of A’ is
closed in the Whitehead topology and so A’ is discrete.

[
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Corollary 2.2.16. Every compact subset of | K| is contained in the union of
a finite number of simplexes.

Proof. Let C' be a compact subset of | K| which is not contained in any finite
union of simplexes. Then C' meets infinitely many open simplexes. Then by
Proposition ( 2.2.15) it contains an infinite discrete subset A’ which, since it
is closed, is compact also. Let &7 = {V, : a € A’} be a set of open sets such
that V,N A" ={a} V a€ A" Now & is an open covering of A" which has
no finite subcovering - which gives a contradiction. O]

Corollary 2.2.17. A simplicial complex K is finite if and only if the set | K|
18 compact.

Proof. "="

Each closed simplex is homeomorphic to some standard n-simplex A,, which
is compact, hence every simplex is compact. The set |K| is then compact
since it is the finite union of compact sets.

77¢77
Cor ( 2.2.16)
[

Definition 2.2.18 (The open star of a vertex). The open star St(v) of
a vertez v in a simplicial polytope |K| is defined as
St(v) ={a € |K|: a(v) #0}
The mapping

g:|K|l¢g—1  givenby  a— «a(v)

is continuous, and hence St(v) is an open subset of |K|; and hence also
of |[K|. It follows that

a€Stv) e aw)#0< ac (o) where veaT
and thus

St(v) = U{(a) : v is a vertex of o}

Conversely, the closed star St(v) of a vertex v is the union of all closed
simplexes which have v as a vertex.

Remark 2.2.19. From here on, the polytope associated with a simplicial
complex K will be denoted K also, when there is no danger of confusion.
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2.3 Dugundji’s extension theorem

In this section we will prove a theorem by Dugundji on the extension property
of mappings f : A — L to the space X D A where X is metrizable, A is a
closed subset of X and L is a locally convex topological linear space. When
dealing with metrizable spaces, this is more general and hence more useful
than the well-known Tietze’s extension theorem.

Definition 2.3.1 (Canonical covering). Let X be a topological space, and
let A be a closed subspace of X. A covering of X\ A by a collection v of open
sets of X\ A is called a canonical covering of X\ A if and only if the following
conditions hold:

(CC1) v is neighborhood-finite (see Definition ( 1.4.3))

(CC2) Every neighborhood of any boundary point of A in X contains
infinitely many elements of .

(CC3) For each neighborhood V' of a point a € A in X there ezists a
neighborhood W of a in X, W C V such that every open set U € ~ which
meets W is contained in V.

Example 2.3.2. Let X = B(0,1) have the Euclidean topology and let A =
{0}. Denote by U, the set {z € X : #2 <d(0,2) < 2}. Nowy={U, :n€
N} is a covering of X \ A and since each U, only intersects two others, -y is
neighborhood-finite. The conditions (CC2) and (CC3) are trivially fulfilled.

Hence v is a canonical covering of X \ A.

In the example above, X was a metric space. We will now see that for
any metric space such a covering can be found.

Lemma 2.3.3. If X is a metrizable space and A is a (proper) closed subspace
of X, then there exists a canonical covering of X \ A.

Proof. Let d be a metric defining the topology in X. For each x € X\ A let
S, denote the open neighborhood of x in X defined by

1
S, = Bx(z, §d(x, A))

Hence {S, : x € X\A} is an open covering of X\ A. By Thm ( 1.5.13),
since X'\ A is metrizable it is paracompact. Thus the open covering {5, : = €
X\ A} has a locally finite open refinement ~.

We now wish to show that v satisfies (CC2) and (CC3).

Let V' be any neighborhood of an arbitrary point a € A in X. Then there
exists k € R, such that Bx(a,2k) C V.

Denote by W the neighborhood of a defined by
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1
W = Bx(a, 3)

Now assume that U € v meets W at some point y € X. Since v is a
refinement of {S, : x € X\A} there must be a point x € X\ A such that
y € U C S,. Hence by the definition of S, it follows that

1 1 1 1 1 1
d(a,z) < d(a,y)+d(y,x) < §k‘+§d(:v,A) < §k:+§d(a,a:) = §d(a,x) < 51{:.

Hence d(a, x) < k.
Since for any z € S,

d(z,z) < %d(x,A) < —d(z,a)

N | —

we have

1
d(a,z) <d(a,z) +d(z, z) < d(a,x) + §d(a, x) = ;d(a, x) < 2k.
It follows that z € V, hence U C S, C V and so (CC3) holds.

Now assume that a € 0A. To prove that a neighborhood V' of a contains
infinitely many open sets of v, it is enough to show that V contains a set
Up € 7 and a neighborhood V; of a which does not meet Uy. (Then this V;
contains a set U; € 7 and a neighborhood V; of a such that U; N Vi = (),
and by continuing this procedure we obtain a sequence {Uy, Uy, Us, ...} of sets
U; € v where U; CV VieN.)

Let V' be any neighborhood of a. Because a € JA, V contains a point
y € X \ A. Hence there exists U € 7 such that y € U. Let k be such that
Bx(a,2k) C V. Now, by the same argument as above, there exists a point
x € X \ A such that d(a,z) =k <kand U C S, CV.

Now let V) denote the neighborhood of a defined by

1
‘/0 - BX(CL7 §k/)

Then Vo C V and Vo, NU = (), since

=ué¢l



and so (CC2) holds.
[

Lemma 2.3.4 (Replacement by polytopes). If X is a metrizable space
and A is a closed proper subspace of X then there exists a space Y and a
map

p:X —Y

with the following properties:

(RP1) The restriction u|A is a homeomorphism of A onto a closed sub-
space p(A) of Y.

(RP2) The open subspace Y \ u(A) of Y is an infinite simplicial polytope
with the Whitehead topology, and

u(X\ A) C Y\ p(A)

(RP3) Every neighborhood of a boundary point of u(A) in Y contains
infinitely many simplexes of the simplicial polytope Y \ p(A).

Proof. Let v be a canonical covering of X \ A and let N be the geometric
nerve of v (We may assume that () ¢ +). Then the vertices of N are in
1-1 correspondence with the open sets in 7. Denote by vy the vertex of N
corresponding to U € ~.

Let Y denote the disjoint union AUN, and topologize Y as follows:

Let y € Y be an arbitrary point. If y € N, take as a basis for neighbor-
hoods of y in Y all of the neighborhoods of y in N. If y € A, take as a basis
for neighborhoods or y in Y all of the sets V* defined by: If V' is an arbitrary
neighborhood of y in X, then V* is a set in Y consisting of the points of
V' N A and the points of the open stars St(vy) in N, where U is an element
of v contained in V.

Claim: The bases for neighborhoods described above define a topology on
Y.
Proof: Denote

P = {U,V*: U is a neighborhood of y € N in N,V is a neighborhood of 3/ € A in X}

We will show that Z defines a basis for some topology on Y, and that in
this topology the original bases for neighborhoods really are bases for neigh-
borhoods.
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Clearly £ covers Y. It now suffices to show that given By, B, € # and
x € By N By, there exists B € 4 such that x € B C By N Bs.

If By and B, are both open neighborhoods in NV of some point y € N, then
BN Bs is also an open neighborhood of y in N and we may set B = B; N Bs.

If B; and B, can both be written

B =V,  By=V;

where V] and V, are open subsets of X intersecting A, then

reVirnvy

means:
HIfredze ViINANTLNA)=ViNnT)NA
ii) Ifz € N: x € St(vy,)NSt(vy,) where Uy, Uy € v, U; C Vi, and Uy C Vs

In the case i), V4 N V4 is a neighborhood of z in X. If y € (ViNV,)* NN
then y € St(vy) where U C (V3 N V,); hence U C Vi and U C V3, thus
St(vy) C Vi*, and St(vy) C V5, hence y € St(vy) C Vi* N V5. In other
words, we may set B = (V3 N V)"

In the case ii), since open stars of vertices of N are open sets of N, we
may set B = St(vy,) N St(vy,) € A.

Finally, consider the case where By = U which is an open subset of N
and By = V* for some open set V' C X, and suppose that y € U N V*.

Now, since U NV* C N, we have y € U N St(vy) C U N V* for some
U’ € v which is open in N. Thus we may choose B = U N St(vy:) € A.

We have now shown that # is a basis for some topology on Y, and it is
easy to show that the initially defined bases of neighborhoods are bases of
neighborhoods in this topology. It follows that the topology whose basis is
2 is the correct one. [

Claim: 'Y with this topology is a Hausdorff space, and both A and N
preserve their original topologies as subspaces of Y .

Proof: If a and y are two different points of Y so that they are both in N
then, since a simplicial polytope is Hausdorff, they have disjoint neighbor-
hoods V and U in N. Now these are also open in Y.

If a and y are both in A then, since X is metric, they have disjoint
neighborhoods V, and V, in X. Since v is a canonical covering, then by
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the condition (CC3) there exist neighborhoods W, and W, such that every
U € v which meets W, is contained in V,, and every V' € v which meets W,
is contained in V,,. We will show that the neighborhoods W and W are
disjoint.

Clearly, (W,NA)N(W,NA) = 0. If U, € 7 such that U, C W,, then each
V' € ~ which meets U, meets W, and hence is contained in V,. Similarly if
we replace a with y. Hence if o, is a simplex in N with vy, as a vertex, and
oy is a simplex in NV with vy, as a vertex, then o, and o, have no vertices
in common. Hence o, N o, = 0 and so St(vy,) N St(vy,) = 0. It follows that
W5 and W are disjoint neighborhoods of a and y in Y.

Finally assume that a € Aand y € N. If a € Intx(A) then V = Intx(A)
is a neighborhood of a which does not meet any elements of v. Hence V* = V.
It follows that if U is any neighborhood of y in NV then V and U are disjoint
neighborhoods of @ and y in Y.

Thus let a € dxA. Let o be the open simplex of N containing y. (by
a previous comment, the open simplexes of N constitute a partition of N),
and denote its vertices by vg, vy, ...,v,. They then correspond to open sets
Up, Uy, ..., U, € v, where U; C X \ A V i=0,1,...,n. Choose a neighbor-
hood V of @ in X such that U; € V Vi =0,1,...,n. (Choose a point z; €
Ui¥i=0,1,...,n and let V = Bx(a,r) where r < d(a,z;) Vi=0,1,...,n)

From the condition (CC3) in the definition of a canonical covering there
exists a neighborhood W of a such that each U € ~ which meets W is
contained in V. Then W cannot meet any of the sets Us.

Now W* is a neighborhood of a in Y. If U C W for some U € 7 then
the open star St(vy) consists of all open simplexes of N which have vy as a
vertex. Let ¢’ be such a simplex of N. Then, if vy is another vertex of o”,
then

UNU #£0=WnU #0=U"#U; V i=0,1,..,n.

Hence none of the v; are vertices of ¢/, and so 0 No’ = (. In other words,
since U was any element of v contained in W and ¢’ was any simplex of N
with vy as a vertex, we get that y ¢ W*. By the same argument as above, if
we let S denote the union of all closed stars St(vy), then also y ¢ S.

Any union S of closed stars of IV is necessarily closed in N, since if s
is a simplex of N then S intersects s in a collection of closed subsimplexes
|s’| where s’ is a subsimplex of s, and any simplex s only has finitely many
subsimplexes. Hence SN |s| is in reality a finite union of closed subsets of |s|
and is hence closed in |s|. Because this is true for any simplex s of N, S is
then a closed subset of V.
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By the argument above, S is a closed subset of N. Let W' = N\ S. Now
W’ is an open neighborhood of y in N and thus in Y, and W/ N W* = 0.

Conclusion: Y is Hausdorff! It is trivial that A and N preserve their
original topologies as subspaces of Y. Hence the claim has been proved. [

Since N = Uye ~ Vy, where each V), belongs to the basis for neighborhoods
of y, N is open in Y, and hence A is closed in Y.

Because 7 is a neighborhood-finite covering of the metrizable space X \ A,
we can define a canonical map

k:X\A— N

as follows:

Let d be a metric in X \ A which defines the topology of X \ A, and
let x € X \ A be an arbitrary point. Since the covering v is locally finite,
x is contained in only a finite number of open sets of v - denote these sets
Uy, Uy, ...U,. Let A denote the closed n-simplex in N corresponding to the
vertices vy, ...vy,. Then we define k(z) as the point in A with barycentric
coordinates &g, &1, ...&, given by

d(%,X - Ul)
Z?:O d(l’,X - U])

(see the proof of Proposition ( 2.2.6) for the definition of barycentric co-
ordinates).

&=

Now construct a function p : X — Y by setting:

x ifreA
u(x):{ k(z) ifre X\ A

The function p is continuous in X if it is continuous on the boundary of
A in X. In order to prove the continuity on JA, let a € JA be arbitrary
and let V* be a basic neighborhood of p(a) in Y. Then V* is, by definition,
determined by some neighborhood V' of a in X, and by the condition (CC3)
for canonical coverings such as v, there exists a neighborhood W C V of a
in X such that every U € ~ for which U N W # () is contained in V. We will
show that u(W) C V*.

Let € W be an arbitrary point - we are about to show that u(z) € V*.
If x € A, then

pwlr)y=x e ANWCANV CV*
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If x € X\ A, then u(x) = k(x) € N. Since {St(vy) : U € v} covers N,
there exists a set U € v which is such that x(x) € St(vy). But then x(z) €
(o) where vy is a vertex of o, and from that it follows that d(x, X \ U) > 0,
which gives © € U. Hence U meets W at the point x, and thus U C V. It
follows from the definition of V* that St(vy) C V*.

Hence, for any basic neighborhood V* of ii(a) in Y there exists a neighbor-
hood W of @ in X such that p(W) C V*, or, in other words p is continuous
in 0A and so it is continuous in X.

Now to the properties (RP1)-(RP3):

We have showed that N is open in Y, therefore A is closed and further-
more it keeps its original topology as a subspace of Y. Hence

lA=1Idy: A— A

is a homeomorphism. Thus (RP1) holds.

By definition Y\ u(A) =Y \ A = N is a simplicial polytope with White-
head topology. Furthermore, by the definition of a canonical covering v, any
neighborhood of any boundary point of A in X contains infinitely many ele-
ments of 7, hence v must have infinitely many elements and so N is infinite.
(RP2) holds.

Finally, each neighborhood V' of a boundary point of A contains infinitely
many elements U; of v (CC2) and hence V* contains all the 0-dimensional
simplexes {vy, } which are infinitely many. Now (RP3) holds as well.

O

Definition 2.3.5 (Locally convex linear topological space). A linear
topological space is a real vector space L with a Hausdorff topology such
that vector addition x + vy and scalar multiplication ax are continuous with
respect to the Hausdorff topology on L and the usual topology on R. L is
locally convex if for each a € L and neighborhood U of a in L there exists a
convex neighborhood V' of a in L such that a € V C U.

Theorem 2.3.6 (Dugundji’s extension theorem). Let X be a metrizable
space, A a closed subspace of X, L a locally convex topological linear space. If
f:A— L is a mapping then there exists a continuous extension g : X — L

of f such that g(X) is contained in the conver hull of f(A) in L.

Proof. We will use the space Y = AU N and the map p : X — Y which
were constructed in Lemma ( 2.3.4). It will be enough to prove that the map
f A — L has an extension F': Y — L such that F(Y) is contained in the
convex hull of f(A) in L, since the composition g = F oy : X — L will then
be an extension of f for which g(X) is contained in the convex hull of f(A)
in L.
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Now let d be a metric which defines the topology in X, and let + be the
same canonical covering of X \ A which was used to construct the space Y
and the map p in Lemma ( 2.3.4).

Let N° denote the set of all the vertices of N. We will define a map
®: AUNY — L in the following way:

In each open set U € 7, select a point xy and then pick a point ay € A
such that d(zy,ay) < 2d(zy, A). Define the map ® by setting:

®(a) = f(a
P(vy) = f(

Claim: ® 1is continuous
Proof: Because N° is an isolated set, ®|/ NV is trivially continuous. So, it
suffices to check the continuity on 0A (OxA = dy A = 04 n0A) to show that
® is continuous on A U N°.

Let a € OxA be an arbitrary point, and let M be any neighborhood of
®(a) = f(a) in L. Because f is continuous, there exists a real number 6 > 0
such that f(Ba(a,d)) C M. Denote V = By(a, $), and let V* be the basic
neighborhood of a = p(a) in Y as defined in Lemma ( 2.3.4). If we can show
that

) itac A
CLU) if’UUENO

PV *N(AUNY Cc M

then the map ® will be continuous in the point a, hence in A and thus
in all of AU NY| since V*N (AU NY) is a neighborhood of @ in AU N°.
Let y be any point in V* N (AU N°). If y € A, then

yeV'NA=VnNA

and thus d(a, y) < § < &, which implies that ®(y) = f(y) € f(Ba(a,d)) C
M.

If y € N° then y = vy for some U € v where U C V. This implies that
d(a,zy) < £ and it follows that

d(a,ay) < d(a,zy) + d(zy,ay) < d(a,zy) + 2d(zy, A) < 3d(a,zy) < 9.

and thus ®(vy) = f(av) € f(Ba(a,d)) C M.
Hence ® is continuous. [

Extending ® over Y: Since L is a linear space, we can extend linearly

over each simplex of N the map ® which is given on the vertices, obtaining
a function F' : Y — L. Since addition and scalar multiplication in L are
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continuous, F'is continuous on each simplex of N. It follows from Proposition
(2.2.9) that F is continuous in all of N. Hence, again it suffices to check the
continuity of F' at the boundary points of A in Y.

Let a € OA be an arbitrary point and let M be any neighborhood of the
point F'(a) = f(a) in L. Because L is locally convex, M contains a convex
neighborhood K of f(a) in L, and since ® is continuous there exists a basic
neighborhood V* of a in Y such that ®[V* N (AU NY)] ¢ K. Now, V*
is determined by a neighborhood V of a in X as in Lemma ( 2.3.4). By
(CC3) there exists a neighborhood W of a in X such that W C V' and such
that each U € « which meets W is contained in V. This neighborhood W
determines another basic neighborhood W* of a in Y, and we will show that
F' is continuous by showing that F(W*) C K.

Let y € W*. If y € A, then

yEW NA=WNACVNA=V"NA

and hence F(y) = ®(y) € K.

If y € N then y is a point of some star St(vy) with U C W by the
definition of W*. Since the open simplexes of N constitute a partition of NV,
the point y is an interior point of some simplex A of N, whose vertices can
be taken to be vy, ...,vy,. Because y € St(vy), U is one of the open sets
Uy, ..., U,. By the definition of the nerve we must have that for each U;,7 =
0,1,...,n, U; meets U and thus also W. Hence U; C V for all i = 0, ...,n and
thus all the vertices vy, ..., vy, are contained in V* N N Hence ®(vy,) € K
for all i = 0,...,n and thus, since K is convex and F' is linear on A (as a
linear extension of @), it holds that F'(A) C K, and in particular, F(y) € K.
Because y was arbitrarily chosen, F'(W*) C K.

Now by definition, ®(A U N°) = f(A). Since F is obtained from ® by
linear extension, where the coefficients are always > 0 and adding up to 1, it
is clear that F'(Y) is contained in the convex hull of ®(A U N?) = f(A).

The proof is complete.

O

Corollary 2.3.7. Every convex set in a locally convex topological linear space
is an AE for the class A of metrizable spaces.

Proof. Let Y be a convex set in a locally convex topological linear space L;
let A be any closed subset of any metrizable space X andlet f: A —Y be a
mapping. Then by the previous theorem there exists a continuous extension
g : X — L such that g(X) is contained in the convex hull of f(A) - which,
since Y is convex is contained in Y. Thus we have a continuous extension
g: X —Y,and so Y is an AE for .Z.

[
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2.4 The Eilenberg-Wojdyslawski theorem

In this section we prove the Eilenberg-Wojdyslawski theorem, which enables
us to use Dugundji’s extension theorem when dealing with ANRs. Reference:

[5]

Assume that Y is a metrizable space and that d is a bounded metric for Y.

Let L =C(Y) ={f:Y — R : fisbounded and continuous}. Then,
clearly, L forms a vector space over R with addition

(f+9)y) = fly)+9y)

(@f)(y) = alf(y))

forall f,ge L,acRandyeY.
We define a norm in L by setting

1f1l = sup| f(y)l-
yey

Then, clearly, if f,g € L and a € R,
1f+9gll = sup|f(y)+9(y)| < sup(|f(y)|+]g9(¥)]) < sup|f(y)|[+suplg(y)| = [[fl+gll-
yey yey yeY yey

leof || = suplaf(y)| = | sup| f(y)] = |al [|f]]
yey yey

[hal =0<:>81€11;|f(y)| =0 |f(y)|=0 Vye f=0.

Hence, ||.|| is a norm.
Proposition 2.4.1. L is Banach.

Proof. Let (f;) be a Cauchy sequence in L. Then the sequence (f;(z)) is
Cauchy in R for all z € Y, and since R is complete the sequence converges.
Hence we may define a function f : Y — R by setting

f(z) = lim fi(z)

Hence f; — f pointwise. Furthermore, if we define

M; = sup| fi(y)]

yey
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then the sequence (M;) is also Cauchy in R and hence convergent - hence
M = lim M; = sup|f(y)|
11— 00 er

and so f is bounded. Moreover, since ||| is the sup-norm, it follows that
fi — f uniformly, and so f is continuous. Hence f € L and so L is complete.
[

Let a € Y, and consider the bounded continuous function f, : ¥ — R
defined by

faly) =d(a,y) Yy Y.
Clearly, f, € L. Denote

x:Y — Liaw— f,

Lemma 2.4.2. The function x is an isometry, called the canonical isometric
embedding of the bounded metric space Y into L.

Proof. Let a,b € Y. Then we have

d(a,b) = [fa(b)] = |fa(b) = fo(0)] < |Ifa=foll = f,ggld(my)—d(@ y)| < d(a,b).

Hence,
d(x(a), x(b)) = [[fa — foll = d(a,b).

Thus, x is an isometry. O]

Theorem 2.4.3 (The Eilenberg-Wojdyslawski theorem). Let Y be a
bounded metric space. The image x(Y) of the canonical isometric embed-
ding x : Y — L into the Banach space L = C(Y) = {f : ¥ — R :
fis bounded and continuous} is a closed subset of the convex hull Z of x(Y)
in L.

Proof. Tt suffices to show that Z\x(Y') is open in Z. Let g € Z\x(Y).
Since Z is the convex hull of x(Y) there exists a finite number of points
ai,as, ...,a, €Y such that

g= thfz where f; = x(a;), Zti =1Lt eR,. Vi=1,..n.
i=1

i=1
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Since g ¢ x(Y) it follows that g # f; ¥V i =1,...,n. Choose § € R such
that 0 < § < %d(g7 fi) V i=1,..,n where d now denotes the metric in L
defined by the norm.

Denote by Vs the open neighborhood of g in Z given by

Vsi={®eZ:dg,®) <0}

We now show that V5 C Z\x(Y), because then since g was arbitrarily chosen,
Z\x(Y") must be open.

Assume that y € Y is such that f = x(y) € V5. By the choice of § we
have that

d(x(a:),x(v)) = d(fi, ) > d(g, fi) —d(g,f) >20 —d=6 ¥V i=1..,n

Hence we obtain

d(g, f)=llg = fll = lgw) — fW)l = lg@)| =D tifi(y) > O _t:)d = 6.
i=1 i=1

It follows that f ¢ Vs, which is a contradiction. Hence V5 C Z\x(Y) and

so Z\x(Y') is open in Z. Hence x(Y') is closed in Z.
[

2.5 ANE versus ANR

As mentioned before, it can be shown that for metrizable spaces, the concepts
of AE/ANE and AR/ANR are essentially the same (in fact, Viiséla gives
the definition of AE/ANE as AR/ANR). This section is devoted to showing
exactly that.

Theorem 2.5.1. Consider A4, the weakly hereditary class of metrizable
spaces. Any space Y € M is an ANE (or AE) for A if and only if it
is an ANR (or AR) for A .

Proof. 1 will only include the proof for ANE/ANR. The proof for AE/AR is

similar.

"="” Let Y be an ANE for .#, and let h : Y — Z,; be an arbitrary
homeomorphism onto a closed subspace Z; of a space Z € .#. Since Y is an
ANE for .# the map h™! : Zy — Y has a continuous extension g : U — Y
for some open neighborhood U of Zy in Z. Then r = hog: U — Zjis a
retraction and hence Y is an ANR for .Z .
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"<" Let Y be an ANR for ., and give Y a bounded metric (For every
metric space X with metric d there is a bounded metric d’ which is equivalent
to d, i.e. (X,d) is homeomorphic to (X,d')) and consider the canonical
isometric embedding y : Y — L = C(Y), where L is Banach. By Thm
( 2.4.3) the homeomorphic image Z, = x(Y") is a closed subset of the convex
hull Z of x(Y'). Since Z is a subspace of a metrizable space L, it is metrizable;
hence Z € .. Since Y is an ANR for .# there exists a neighborhood V' of
Zy in Z and a retraction r : V — Zj.

Now, if X is metrizable, A is a closed subset of X and f: A — Y is a
mapping, then by Dugundji’s extension theorem 2.3.6, the mapping

d=yof:A— 1L

has an extension

v:. X —L

such that U(X) is contained in the convex hull of ®(A) C
U(X) C Z since Z is the convex hull of x(Y). Then U =
neighborhood of A in X:
Clearly U is open since V is continuous. Furthermore,
U(A) =x(f(A) cx(Y)=2cCV

and thus it follows that

(Y); hence

X
U1(V) is a

AC ﬁf*l(V) =U.
Now define

g:U—Y
by

g(x) =x"(r(¥(2))) Yz € U.

Then g is an extension of f over U:

a€ A=

Il
=
=
=

(x(f(a))) since x(f(a)) € x(Y) = Zy
and r is a retraction
= f(a).

Hence Y is an ANE for .#Z. O
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2.6 Dominating spaces

The main goal of this section is to prove that any ANR is dominated by
some simplicial polytope with the Whitehead topology. In order to prove
that result, there are some definitions and lemmas to be studied. Reference:

[5].

Lemma 2.6.1. Let o be an open covering of an open subset W of a convex
set Z in a locally convex space L (that is, the elements of a are contained in
and open in W). Then a has an open refinement

V=AW :p € M}
such that W, is convex for all n € M.

Proof. Let a € W; then there exists a neighborhood U € « (that is, U is
open in W) such that a € U. Because U is open in W, and W is open in Z,
it follows that U is open in Z. Now, because Z C L has the relative topology,
there exists an open set V' in L such that

U=VnNnZ

Now, since L is locally convex there exists a convex open set V' in L s.t.

acV' CV.

Now,
acV'NnZcvVvnz=U,

and V' N Z is convex since both V' and Z are convex. Furthermore,
V''N Z is open in W because it is open in Z. Hence V' N Z is a convex
open neighborhood of a in W, which we may denote W,. Construct such a
neighborhood W, for each point a € W; now

vy={W,:aeW}

is an open cover of W whose elements are convex and for each W, there
exists a neighborhood U € « such that W, C U.

It follows that v is a refinement of « as desired.
O

Lemma 2.6.2. A normed space X (and in particular a Banach space such
as L =C(Y) from section ( 2.4)) is locally convez.
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Proof. A normed space is metrizable and hence, if d is a metric defining
the topology in X (induced by the norm) then for every a € X and every
neighborhood U of a in X there exists a real number 6 > 0 such that B(a,d) C
U, and thus X is locally convex, since the balls B(a,d) are convex. O

Lemma 2.6.3. A convex subset A of a locally convex set X (in particular,
a Banach space) is locally convex.

Proof. Let a € A, and let V' be a neighborhood of @ in A. Then there exists
a neighborhood U of a in X such that V= ANU. Since X is locally convex,
there exists a convex neighborhood U’ of a in X such that U’ C U. Since
A is convex, the set V! = AN U’ is a convex neighborhood of a in A, and
moreover, V' = ANU C ANU = V. Hence A is locally convex. [

Definition 2.6.4 (Near maps). Let o = {Uy) : A € A} be a covering of a
topological space Y. Two maps f,qg: X — Y are a-near if and only if

VaxeX 3NeA such that f(x) € Uy and g(z) € Uy.

Lemma 2.6.5. IfY is a metrizable ANR then there exists an open covering
a of Y such that any two a-near maps f,g: X — Y defined on an arbitrary
space X are homotopic.

Proof. By Theorem ( 2.4.3), we may consider Y as a closed subset of the
convex set Z (= convex hull of x(Y')) in the Banach space L = C(Y)) (here
we identify Y with its isometric image x(Y) C Z).

Since Y is an ANR there exists a neighborhood W of Y in Z and a
retraction r : W — Y.

Let 3 be some open covering of W (that is, its elements are open subsets
of W). W is an open subset of a convex set Z in the locally convex set L
(Lemma 2.6.2), and by Lemma ( 2.6.1), § has an open refinement

y={W,:pe M}
such that W, is convex for all 4 € M. For each pn € M, denote V,, =
W,NY. Then
a={V,:pe M}

is an open covering (open in Y) of Y.

Now let f,g: X — Y be two a-near maps defined on a space X. Since
Z is convex, we can define a homotopy k; : X — Z (where 0 <t < 1) by
setting
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ki(z) =(1—t)f(z)+tglx) Ve e X, t el

Claim: ky(x) e W forallz € X, t el
Proof: Let x € X. Since f and g are a-near there exists y € M such that
f(x),9(x) € V, C W,. Since W, is convex,

k(z) e W, CcWVtell
Finally, define a homotopy h; : X — Y, where 0 <t <1, by setting

hi(x) =rlk(z)]Vee X, tel

Because both r and k; are continuous, h; is continuous, and moreover,
since r is a retraction, we have that hg = ro kg = ro f = f and, similarly,
]’Ll =4dg.

It follows that h; is a homotopy from f to g.

[

Definition 2.6.6 (Partial realizations of polytopes). Let Y be a topo-
logical space, and let « = {Uy : X € A} be a covering of Y. Let K be a
sitmplicial polytope with the Whitehead topology, and let L be a subpolytope
of K which contains all the vertices of K.

A partial realization of K in Y relative to o defined on L is a map

f:L—>Y
such that for every closed simplex o of K there exists X € A for which

f(LﬂO') C U)\.

In the case where L = K the function f is called a full realization of K
'Y relative to a.

Lemma 2.6.7. If a metrizable space Y is an ANR, then every open covering
a of Y has an open refinement 3 such that every partial realization of any
simplicial polytope K with Whitehead topology in 'Y relative to 3 extends to
a full realization of K relative to .

Proof. Again, by Lemma ( 2.4.3), we may consider Y as a closed subspace
of a convex set Z in the Banach space C(Y).

Since Y is an ANR there exists an open neighborhood W of YV in Z and
a retraction r : W — Y. Being a convex set in a Banach space, Z is locally
convex, by Lemma ( 2.6.3).

43



Let @« = {Uy : A € A} be a given open covering of Y; we construct a
refinement 3 in the following way:
Let y € Y be any point, and choose a A € A such that y € U,. Since Z

is locally convex there exists a convex neighborhood N, of y in Z such that
N, C W and r(N,) C U,.
Set V, = N,NY. It follows that

V,=r(N,NY) Cr(N,) CU,
and thus

B={V,:yeY}

is an open refinement of «.
We now wish to show that 3 satisfies the given condition.

Let f: L — Y be a partial realization of a polytope K in Y relative to
B. If i .Y — Z is the inclusion map, then consider the composition

bd=iof:L—Z

We will construct an extension ¥ : K — Z:

Let o be any closed simplex of K, and let H, denote the convex hull of
®(LNo)in Z. Define

K'=K'UL

where K™ is the n-skeleton of K. By induction we construct a sequence
of maps

—n

v, K —Z7 n=20,1,2,..

satisfying the following conditions:
D) Wy =P
i) UK =0,  n>0
i) U,(K" No)C H, for each closed simplex o of K.

Now Wy is defined by i) - hence we assume that n > 0 and that ¥,,_; has
been constructed. We will extend W,,_; to the interior of each n-dimensional
simplex ¢ of K which is not contained in L. The boundary do is a subset of
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—n—1 . :
K ", and hence V,,_; is defined there. Furthermore, because H,, is a convex

subset of a Banach space, it follows from Corollary ( 2.3.7) that ¥,,_1|g, has
an extension

Ky :0 — H,
We now define ¥,, by setting
—n—1
Ko () reocCK \L

Claim: V,, is continuous and satisfies the conditions i) - iii).
Proof: By induction on n. K =1Lso Uy is continuous. Assume that ¥, is
continuous for all m < n, and let o be a simplex in & . If o is not a simplex
of L, then by the definition of k., ¥,, is continuous on o.

If o is a simplex of L then o C K ¥ m and

\I/n|o - \Iln—l‘o — . = \Ij0|cr - CI)|U

which is continuous. Hence W, is continuous on each simplex o in K

. . . —->n
and so it is continuous on K .
It is now easy to verify that W,, satisfies the conditions i) - 4i). O

Hence we have constructed a sequence of maps {V¥,, : n=0,1,2,...}.
Next, we define a map ¥ : K — Z by setting
U(z) =V,(x) ifzecK .

Claim: ¥ is continuous
Proof: Let o be a simplex in K, and let n = dim(c). Then V|, = U, |, is
continuous in || and hence ¥ is continuous on K. [

We now wish to show that W(K) C W. Let ¢ be any closed simplex of
K. Because f : L — Y is a partial realization relative to 3, there exists a

point y € Y such that
¢(LNno)=f(LNno)CV,CN,
and since N, is convex, we have that
V(o) CH, C NyCW

Hence V(K) C W.
Finally, we construct a map g : K — Y by
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g(x) = r[¥(x)] for every z € K.

Because U is an extension of ®, we have that g is an extension of f. We
just need to show that ¢ is a full realization relative to a.

Let o be any closed simplex in K. We have just shown that there is a
y € Y such that V(o) C Ny, and from the way N, is constructed we know
that there is a A € A such that r(N,) C U,.

Hence

g(o) =r[¥(o)] Cr(N,) C U, €a

and so g s a full realization of K in Y relative to a.
O

Definition 2.6.8 (Dominating spaces). A space X dominates the space
Y if and only if there are maps

¢ XY
UV:Y—-X

such that the map ® oW : Y — Y is homotopic to Idy. Then X is said
to be a dominating space of Y.

Theorem 2.6.9. Let Y be a metrizable ANR. Then there exists a simplicial
polytope X with the Whitehead topology which dominates Y .

Proof. By Lemma ( 2.6.5) there exists an open covering « of Y such that any
two a-near maps f,g : X — Y for any space X are homotopic. By Lemma
( 2.6.7) there is an open refinement 3 of v such that any partial realization
of any simplicial polytope K with the Whitehead topology in Y relative to
[ can be extended to a full realization of K in Y relative to a.

Being a metrizable space, Y is paracompact (Theorem 1.5.13) and fully
normal (Proposition 1.6.4), and hence (3 has a neighborhood-finite open star
refinement . Let X denote the geometric nerve of v with the Whitehead
topology. We will show that X dominates Y.

Let X° denote the O-skeleton (i.e. the polytope corresponding to the
simplicial complex consisting of the vertices of X) of X, and define a map

O, X' > Y

46



in the following way:
For each open set U € ~ pick a point yy € U, and define @y by setting

Qo(vr) = yu
where vy is the vertex of X corresponding to U. Now, since X" is discrete,
®, is continuous. Furthermore, if |o| is a closed simplex in X, whose vertices
are vy, ..., Uy,, then by the definition of a nerve,

UnNUinN..nU, # 0

Now, because 7 is a star refinement of (3, there exists an open set V, € (8
which contains each U;, i = 0,1,...,q. It follows that ®y(|o| N X°) C V,,
and so ®g is a partial realization of X in Y relative to 3 defined on X°.

By the choice of the covering (3, ®, extends to a full realization

o: X —-Y

relative to . Then for any closed simplex |o| of X there exists an open
set W, € « such that

O(lo|) € W,

for each closed simplex |o| of X. Considering the proof of Lemma ( 2.6.7)
we may assume that V, C W, for each simplex o of X.

Now consider the canonical map

kK:Y — X

of the locally finite covering 7 as defined in the proof of Lemma ( 2.3.4).
We will show that the maps

Pok:Y =Y

and

Id:Y —Y
are a-near, so that by the definition of the covering o they will be homo-

topic.

Let y € Y be an arbitrarily chosen point, and let Uy, Uy, ..U, be the sets
of B containing y. Then k(y) is a point of the open simplex (o) of X with
vertices vy, ..., vy, It follows that
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D(k(y)) € Wo
On the other hand,

yGUiCVaCWU

and so ® o k and Idy are a-near.

Hence ® o x is homotopic to Idy and so X dominates Y. O

2.7 Manifolds and local ANRs

References: [3], [5]

In this section we will show that each topological manifold is indeed an
ANR. In this section, ANR denotes an ANR for the class .# of metrizable
spaces.

Definition 2.7.1 (Topological manifold). A topological space X is called
a topological n-manifold, where n € N, if

i) X is Hausdorff
i) X is Ny
ii1) Each point x € X has a neighborhood which is homeomorphic to R™.

Remark 2.7.2. Recall from Topology II that a topological manifold is metriz-
able and separable.

Definition 2.7.3 (Local ANR/ANE). A metrizable space Y is a local
ANR if each point y € Y has a neighborhood which is an ANR.

For any class of spaces there is a similar definition if ANR is replaced by
ANE, but in the case of metric spaces these two concepts are the same by
Theorem ( 2.5.1).

Example 2.7.4. A topological manifold is a local ANR.
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Proof. Let Y be a topological n-manifold, and let ¥y € Y be any point.
Now y has a neighborhood V' which is homeomorphic to R". Let X be any
metrizable space and let A be any closed subset of X. Let

f:A—=V
be any continuous function, and let
h:V —-R"
be the homeomorphism between V' and R". Now

hof:A—R"

is a mapping, and furthermore, R" is a locally convex topological linear
space. Hence by Dugundji’s extension theorem ( 2.3.6) there is a continuous
extension

g: X —R",
and hence

hlog: X =V

is a continuous extension of f. It follows that V is an ANE (in fact an
AE, and thus an ANE); hence, since it is also metrizable it is an ANR, and
so Y is a local ANR. ]

Lemma 2.7.5. Every open subspace of an ANE for the class € is an ANFE
for €.

Proof. Let Y be an ANE for the class ¢ and let W be an open subspace
of Y. Let f: A — W be any map defined on a closed subspace A of an
arbitrary space X from %. Since Y is an ANE for %', the composed mapping

itof:A-W =Y

has an extension

g: V=Y
over a neighborhood V of A in X. Now denote

U=g'(W)CV;
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since ¢ is continuous and W is open in Y, U is an open subset of V' and
hence of X. Furthermore, since g(A) = f(A) C W, U is a neighborhood of
Ain X.

Denote

h=glU:U—W,

now h is an extension of f over U and hence W is an ANE for .
O

Theorem 2.7.6. A separable metrizable space X which is a local ANR is an
ANR.

Proof. The theorem will be proved in three steps:

i) If X is the union of two open ANRs it is an ANR.
ii) If X is the union of countably many disjoint open ANRs it is an ANR.
iii) If X is the union of arbitrarily many open ANRs it is an ANR.

The proof goes as follows:

i) Assume that X = A; U Ay where A; and A, are open ANRs, or equiv-
alently, ANEs. Let f : B — X where B is a closed subspace of some
metrizable space Y. Now the sets

Fi =B\ [ (As); Fy =B\ f'(A)

are disjoint and closed in B; hence also in Y. Now since Y is normal
there are disjoint open sets Y; and Y5 in Y such that

F1CYV1; F, CYs5.

Now Yy = Y \ (Y1 UY3) is closed in Y. Denote B; = Y; N B where
1 =0,1,2. We then see that

a) f(By) C AiNAs; b) F(BL) C Ai; ¢) f(Bs) C A

since
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reBy =rxeYyANz eB
=z¢ Y1UY:))ANzeB
:>I'¢(F1UF2)/\.TEB
=z € fH(A)ANx e fTH(A)
:>f(l') EAQ/\f(ﬁ)GAl.

re€EB =>xeYINxEB
=c¢YoN Nz eB
>z ¢ ANz €B
=z € f71(A)
:>f($)€A1

¢) In the same way f(Bs) C As.

Because By C Yj is closed and A; N A is an ANR by Lemma ( 2.7.5),
there is an extension of the mapping f|g, : By — A1 N As to some
open neighborhood Uy of By in Y. This extension and the original
mapping f agree on By = B N Uy, so combined they define a function
g: BUUy — X. Because

Up = (Uy U B) N'Yy,

Uy is closed in Uy U B. Since B is closed in Y it is also closed in Uy U B.
Hence, by Lemma ( 1.4.1), g is continuous.

Now it holds that
g(U()UBl) C Al; g(UQUBQ) C A2

since

g(Uo U By) = g(Up) U f(By) C A1; g(UpU By) = g(Up) U f(Bs) C A

and Yy \ Uy is closed in Y.
Also, the set Uy U By is closed in Uy U Y] because

(UoUY)\ (UoUBy) =Y1\B =Y1\B
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i)

which is open in Y. Now, since A; is an ANR we may extend g¢| :
(UpUBy) — Aj to a mapping ¢; : Uy — A; where Uj is an open neigh-
borhood of Uy U By in Uy UY;. Since Yy \ Uy was closed in Y, the set
Uy UY] is open in Yy U Y], and hence Uy is open in Yy U Y].

Analogously, one may extend the mapping g| : (Uy U By) — A, to an
open neighborhood U, of Uy U By in Uy U Y5, and again we see that U,
is open in Yy U Ys.

Denote U = U; U U, and define F': U — X by setting

| gi(u) ifuely,
F(u) = { g2(u) if u € Us.

If now x € Uy = Uy N U, then g(z) = gi1(z) = g2(x). It follows that
F is well defined. Because U; = U \ Yy and Uy = U \ Y; the sets Uy
and Uj are closed in U; hence by Lemma ( 1.4.1) F is continuous. It

is clear that F'is an extension of f and it remains to show that U is a
neighborhood of B in Y.

We have already seen that U; is open in Yy UY; for ¢ = 1,2, and it
follows that

VAU =((YouY))\U) U((YoUYz)\Us)

which is then closed. Hence U is open. It follows that X is an ANE,
or equivalently, an ANR.

Now assume that X = [, .y An where the A, are disjoint open ANRs.
Then suppose that X is embedded as a closed subset of some metriz-
able space Z, and let d be a metric on Z. Now, since each A; is the
complement of an open subset of X it is closed in X and hence in Z.
Find some collection {U, : n € N} of disjoint open subsets of Z such
that A, C U, for each n € N. (This may be done, for instance, by
choosing U,, = {z € Z : d(z,A,) < d(z, X \ A,)}.) A, being an ANR,
and also being a closed subset of U, there is some open set V,, C U,
and a retraction r, : U, — A,. These retractions then define a re-
traction r : | J,cny Vo — X by setting r7(x) = r,(x) whenever z € V..
Because |J,,cy Vi is an open subset of Z which contains X, we see that
X is an ANR.
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iii) We now assume that X is any union of open ANRs A;. Since X is
metrizable and separable it is Lindelof, and so there exists a countable
set {A; : i € N} of these ANRs such that X = |,y Ai. However, the
A; are not necessarily disjoint so we cannot yet use part ii).

Define new open sets

By part i) we see that each U, is an ANR, and it is clear that X =
Unen Un and that U, C Upyy for all n € N,

Define open sets V,, for all n € N by setting

1
Vn:{xeX:d(x,Uf)<E}

where d is a metric defining the topology on X. Now V,, C U,, and V,
is open; hence V,, is an ANR. Furthermore,

X:UVn; ananGsznCVnH

neN

Now define open sets W, for all n € N by setting

Wy =V, Wy=Vy; WnZVn\Vn_g when n > 3.

It is clear that each W,, is open in X and that W,, C V,,. Hence W, is
an ANR. Furthermore, V,, \ V,,_1 C W,, and so

X=Jw.= (U W%) U (U Wgn_1>

neN neN neN

where J, oy Won and |J,,cy Won—1 are unions of disjoint open ANRs;
hence by ii) they are ANRs, and so by i) X is an ANR.

Theorem 2.7.7. A topological manifold is an ANR.

33



Proof. By Example ( 2.7.4) a manifold is a local ANR, and by Theorem
(2.7.6) it is an ANR.
O
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Chapter 3

Homotopy theory

In order to show that an ANR is homotopy equivalent to a CW-complex we
will use elements of homotopy theory such as higher homotopy groups and
weak homotopy equivalence. This chapter provides the required machinery
in addition to a survey of CW-complexes, and concludes with the result that
any ANR is homotopy equivalent to a CW-complex.

3.1 Higher homotopy groups

References: [7], [8]

Just like the elements of the fundamental group m (X, z¢) of a topological
space X based at a point o € X can be seen as equivalence classes of
mappings f : S' — X, we may define new groups 7, (X, zo) whose elements
are equivalence classes of mappings g : S — X. Such a group will be called
the n'* homotopy group of X.

In this section we define the higher homotopy groups of a space and then
prove some of their basic properties.

We begin by defining the n'* homotopy group as a set only; in the set of
mappings (S™,eq) — (X, z9) where ¢y = (0,0,...,0,1) € S™ and xy are the
base points of the spaces S™ and X, two mappings f,g : (5™, eq) — (X, x0)
belong to the same equivalence class if and only if f ~ g rel ey. In that case
the equivalence class is written [f] = [g]. We define 7, (X, z0) = {[f]|f :
(Sn> 60) - (Xv JZO)}

The proofs of the following basic lemmas etc were covered in the course
Homotopy theory, so here I will only state the results.
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From now on we will denote by [Y] B; X, z¢] the set of homotopy classes
rel B of mappings (Y, B) — (X, ).

Lemma 3.1.1. Define the mapping ® : B — S™ by setting

() = (24/1 — |z)22,2|z)* — 1) € R" x R.

Then ®(S™1) = ¢y = (0,0,...,0,1) € R"™ and ® induces a homeomor-
phism ®; : B /S" ! — S™.

It follows from this that the mapping [f] — [fo®] is a bijection 7, (X, xo) —
[B", 5", X, xo].

Since B" is homeomorphic to I" and the homeomorphism between them
takes the boundary of one to the boundary of the other, we have in fact a
bijection between the set m,(X, o) as defined and the set [I™, 0I™; X, xo].
Hence the elements of 7, (X, z9) may be seen as equivalence classes rel 01"
of mappings f : (™, 0I") — (X, x).

We define a binary operation in m,(X, zq) by setting [f][g] = [fg], where
the product fg is defined analogously to as in the case of the fundamental
group:

For two maps f,g: (I",0I") — (X, o) their product is
fg:(I"0I") — (X, x0),

g
X1

= o=

IA IA
IAIA

fg((l’l,i[Z,--- - g((?l‘l _1’1‘27,..,1'”)),

) _{ F (23,29, 2)) |

o= O

Then, since fg is continuous on the two closed sets {(z1,...,z,) € I" :
z1 < 3} and {(z1,...,x,) € I" : 21 > 1} and agrees on their intersection it is
continuous on all of I"™ by Lemma ( 1.4.1), and clearly fg(9I™) = xq, so fg
is well defined.

Lemma 3.1.2. The set m,(X, z) with the binary operation defined above is
a group.

Let (X, x) and (Y, o) be topological spaces with base points xy and vy,
and let f : (X,29) — (Y,y0) be a mapping. If g : (5™, s) — (X,z0) is
a mapping then so is fog : (S s) — (Y,y); and furthermore, if g, 9> :
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(S™,s) — (X, x0) such that g; ~ gy rel s, then fog; ~ fogyrel s. Hence
we obtain a well-defined mapping

f* : ﬂn(X7 $0) - Wn(Y7 yO)
induced by f which is defined by f.([g]) = [f o g] whenever g € 7,(X, x0).

Proposition 3.1.3. i) f. is a homomorphism.
i) (Idx). = Idn, (x20)-
iti) (fog)e= fiogs
w) If fo =~ f1 rel xo then (fo). = (f1)

v) If f X — Y is a homotopy equivalence, then f, : m,(X,xo) —
(Y, f(x0)) is a group isomorphism for all n € N and for all base
points xg € X.

Definition 3.1.4 (Relative homotopy group). Let (X, A) be a pair of
topological spaces - that is, X is a topological space and A is a subspace of
X. Now we define the relative homotopy group of the space X with respect
to A at a base point xy € A as follows:

Given the n-cube I™, where n > 1, let I"™! denote the face of 1™ where
the coordinate t, = 0. The union of the remaining faces will be denoted J"1.
Then we have

oI =1ty gl ot =i

Consider mappings

fom g — (X, A x);

that is, continuous functions f : I" — X such that f(I"™') C A and
fI") = {mo}

We denote by 7,(X, A, o) the set of homotopy classes [f] rel J** of
such mappings f (where the homotopy maps I"™' into A), and we define
multiplication in 7,(X, A, xo) as we did earlier in 7,(X,zo). We may show
in the exact same way that 7,(X, A, xo) with this multiplication is a group
when n > 2, and we call it thus the n'® relative homotopy group of X with
respect to A at xg.

Proposition 3.1.5. If o € m,(X, A, ) is represented by a mapping

foIm g — (X, A x)
such that f(I"™) C A, then o = 0.
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Proof. Define a homotopy

F:I"xI—X
by setting

F ((tl, ...,tnfl,tn%t) — f(tl, ...,tn,17t+ tn - ttn)

Then, since t+t,—tt, = t(1—t,)+t, € I we get that F} : (I", 1" J*1) —
(X, A, x) for all £ € I and

Fo=F; Fi(I") = {xo}
since (t1,...,tn—1,1) € J" P and f(J" ') = {z,}. Hence a = 0. O

3.2 The exact homotopy sequence of a pair
of spaces

Reference: [7]

Let X be a topological space, let o € A C X and let n > 1. We will
define a function

§: (X, A, xg) — mo1(A, o).

which is a group homomorphism for n > 1. Assume that a € 7, (X, A, z9).
Then « is the equivalence class of some mapping f : (I, "' J" 1) —
(X, A, .Z'[)).

If n =1, then I"! is a point; hence f(I"!) is a point of A defining a
path component 3 € m,_;(A, zo) of A.

If n > 1, then the restriction f|-1 is a mapping (I"~', 0I""!) — (A, z0)
and thus it represents some element (that is, a homotopy class) 5 € m,_1(A, xo).

Obviously the element § € 7, 1(A, z) does not depend on the choice of

f representing the homotopy class a € 7,(X, A, xg). Thus we may define the
function ¢ by setting

Ia) = p.

The function 6 will be called the boundary operator.
The following propositions are trivial:
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Proposition 3.2.1.
6(€7rn(X,A,zo)) - ewn_l(A,xo)' 0J
Proposition 3.2.2. Ifn > 1 then d is a group homomorphism. [
The inclusion maps

i: (A z9) — (X, o), Jj:(X,zg) — (X, A, x0)

induce functions

ix (A, z) — (X, ), Je t (X, z0) — (X, A, x0)

which are homomorphisms for n > 1 and n > 2, respectively.

(Note that j is in fact (X, {xo},z0) — (X, A, x9) but that since f :
(I",0I") — (X, ) is equivalent to f : (1", 1", J" 1) — (X, {zo}, zo) we
may identify m,(X, xo) with m, (X, {xo}, z0).)

We may now define a sequence

L Tnt1(X, A, zo) LR (A, o) e Tn (X, 7o) 2, T (X, A, 7o) = Mu-1(4, 20) = ...

— 7T1(X, A, .730) i> ’/To(A,iL'Q) l—*> ’/T(](X, xo).

which is called the homotopy sequence of the pair (X, A) with respect to
the base point o € A.

Definition 3.2.3 (Exact sequence). A sequence

e Gi+1 & Gz f:>1 Gi,1 — ...

of groups and homomorphisms is said to be exact if, for each i € N,

Ker(fi—1) = Im(f;).

Remark 3.2.4. If the sequence ends, as in the case of the homotopy se-
quence, then nmo restriction is put on the image of the last mapping. Fur-
thermore, if the last sets are not groups and thus the last mappings are not
homomorphism, the same definition of exatness holds even for those last
steps.
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Theorem 3.2.5 (The exact homotopy sequence of a pair). The ho-
motopy sequence of any pair (X, A) with respect to any base point xo € A is
exact.

Proof. The proof breaks up into six statements:

<1 = 0.

i) J

i)

iii) 4.0 =

iv) If a € m,(X,z0) and j.(«) = 0, then there exists an element 3 €
(A, o) such that i, (5) = a.

v) If @ € m,(X, A, z0) and §(cr) = 0, then there exists an element § €
(X, o) such that j,.(5) = a.

vi) If a € m,_1(A, x9) and i.(a) = 0, then there exists an element 8 €
(X, A, zo) such that §(3) =

Now, from i) we get that Im(i,) C Ker(j.); and from iv) we get that
Ker(j.) € Im(i.); hence Im(i.) = Ker(j.). Similarly, ii) and v) give
Im(j.) = Ker(d), and iii) and vi) give Im(0) = Ker(i,). Thus it suffices to
show that the statements i)-vi) are true.

Proof of i) For each n > 0, let a € 7,(A, o) and let f : (I",0I") — (A, xy) be
a map belonging to the homotopy class «. Now the element j,i,(«) €
(X, A, z9) is the homotopy class of the map

joiof: ([”,[”*I,J””) — (X, A, x0),

and since (j oio f)(I") C A we get from Proposition ( 3.1.5) that
J«ixwcx = 0. Since a was an arbitrary element of 7,(A, z), it follows
that j.i, = 0.

Proof of ii) Foreachn > 0, let € m, (X, x¢) and choose a mapping f : (I",01") —
(X, zo) belonging to the homotopy class a. Then the element §j, () is
determined by the restriction (jo f)|jn-1 = f|fn-1, and since f(I"1) =
{zo} it follows that (d o j,)(ar) = 0. Hence § o j, = 0.
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Proof of iii) For eachn > 0, let a € 7, (X, A, xy) and choose amap f : (I"; "L, J"71) —
(X, A, zo) which is in the homotopy class a. Then the element i,0(a) €
Tn-1(X, ) is determined by the restriction g = f|m-1. Define a ho-
motopy G : I"! x I — X by setting

G ((tryeostu1)st) = F(try s tui, t).

Then Gy = g, Gi(I"™') = {x¢} and G; : (I"7',I"?) — (X, zg) if
n > 1, hence [g] = 0 € 7, 1(X,20). If n = 1 then G(I"™! x I) is
contained in one path component of X - the one containing xy. Hence
[9] =0 € mo(X, zg). This implies that (i, 0 0)(«) = 0; hence i, 0 § = 0.

Proof of iv) Let f : (I",0I") — (X,x¢) be a mapping in the homotopy class «.
Then since j,(a) = 0, there must exist a homotopy F' : [" x [ — X
such that Fy = f, Fi(I") = {zo} and F, : (I", 1", J"7!) — (X, A, z0)
for all ¢t € I. Define a new homotopy G : I" x I — X by setting

G ((t1y -y tn1,tn), 1) ((t1, .oy tn-1,0),2t,), if0<2t, <t,

=F
F((tr, oo tnr, 220),8), ift < 2t, <2

Then Gy = f, G1(I™) C A and G¢(9I"™) = {zo} for all t € I. Now G,
belongs to some homotopy class [ of m,(A, xy), and hence i.(3) = a.

Proof of v) First, let’s assume that n > 1. Let f : (I, 1" 1, J" 1) — (X, A, z0)
belong to the homotopy class a - then since () = 0 there is a homo-
topy G : I"™' x I — A such that Gy = f|m-1, Gi(I"™') = {x} and
G (OI" 1) = {xo} for all t € I. We will define a homotopy

H:0I"xI— A

by setting

[ G(x,t) fxel™?
HWJ”‘{xO if 7 € Jo L.

Since Hy = flasn, it follows from Corollary ( 3.3.15) that H has an
extension F' : I" x I — X such that Fy, = f. Since F1(0I") =
H,(0I") = xy, F; belongs to some homotopy class 8 € m,(X, ),
and since Fy : (I", 171, J" 1) — (X, A, x¢) for all t € I we get that
jo(B) =
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Proof of vi)

In the case n = 1, « is represented by a path f : I — X such that
f(0) € A and f(1) = . Here the condition 6(a)) = 0 means that f(0)
is contained in the same path component of A as xy. Thus there is a
path v : I — A such that v(0) = xy and (1) = f(0). We may now
define a homotopy F': I x I — X by setting

y((1—t)+(1+4+t)s) when0<s
Flat)= { f((L+1)s—1) when L <

=
1+t

~+

+

t
<15
s <

—_

such that Fy = f, F;(0) € v(I) C A, Fy(1) = f(1) =z forall t € I and
F1(0) = v(0) = 9. Then F} belongs to a homotopy class 3 € m (X, z)
and the homotopy F' implies that j.(5) = a.

Let’s first assume that n > 1. Let f: (I"7',0I"') — (4, o) belong
to the homotopy class «; then from the assumption i,(a) = 0 we know
that there must exist a homotopy F : I"~! x I — X such that F, = f,
Fi(I"™Y) = {zo} and F,(0I"') = {xo} for all t € I. Define a mapping
g: " — X by setting

g(tla -'-atn—latn) =F ((tla -'-atn—l)atn) 5

then g : (1", "1, J"71) — (X, A, zo) belongs to some homotopy class
B € m (X, A, x0), and since g|m-1 = f, we get 6(3) = a.

Now consider the case where n = 1; then « is a path component of
A. The assumption i,(«) = 0 means that « is contained in the path
component of X containing xy. Let f : I — X be the constant path
f(t) = xo. This path represents a homotopy class 3 € m (X, A, ),
and since f(0) € a, we get 4(5) = a.

[]

3.3 Adjunction spaces and the method of ad-

joining cells

CW-complexes may be constructed through a method referred to as adjoin-
ing cells. Before defining what a CW-complex is we will take a closer look
at the method we will use to build them. First of all we will define what an
adjunction space is.
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Let X and Y be topological spaces, and let A be a closed subset of X.
Let f : A — Y be a continuous map. Denote by W the topological sum
X +Y - that is, W is the disjoint union of X and Y topologized such that a
subset V' C W is open if and only if V N X is open in X and V NY is open
inY.

We will define a relation ~ on W in the following way: If v and v are two
elements of W, then u ~ v if and only if at least one of the following four
equations makes sense and holds:

w=v, f)=v, u=f@), f@)= 7).

It is clear that ~ is an equivalence relation.
Hence, by identifying the elements which are equivalent to each other, we
7glue” the spaces X and Y together "along” the closed subset A.

Definition 3.3.1 (Adjunction space). The quotient space Z = W/ ~ of
the space W over the equivalence relation ~ is the adjunction space obtained
by adjoining X to'Y by means of the given map f: A —Y.

Consider the canonical projection

p:W —Z

Since p coinduces the topology on Z, it is of course continuous. Further-
more, we have:

Proposition 3.3.2. The restriction

i=plY:Y —>Z
15 an embedding.

Proof. Since p is the restriction of a continuous map it is continuous. Assume
that u,v € Y such that p(u) = p(v), or in other words, u ~ v. Now, because
u and v are elements of Y, the first of the four equations is the only one
making sense and hence u = v. Now we know that ¢ is injective, and it
remains to show that it is a closed map.

Let C' be a closed subset of Y. Now because p is an identification map,
p(C) is closed in Z if and only if D = p~!(p(C)) is closed in W. From the
definition of ~ we get that D = f~1(C) U C. Since C' is closed in Y and f
is continuous, we have that f~'(C) = DN X is closed in A and hence in X,
and C = DNY was closed in Y, so D is closed in W. Hence 7 is a closed
map.

[]
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If we let C' =Y in the proof above we get the following result:

Corollary 3.3.3. The image p(Y) is a closed subspace of the adjunction
space Z .

From now on we may thus identify Y with p(Y") and view Y as a closed
subspace of the adjunction space Z.

Proposition 3.3.4. The restriction
J=pl(X\A): (X\A)—Z
15 an embedding.

Proof. The injectivity part is proved as in Proposition ( 3.3.2), and since p
is continuous then so is j. We proceed to show that j is an open map.

Let U be an open subset of X \ A. Again because p is an identification
map, p(U) is open in Z if and only if V = p~!(p(U)) is open in W. By the
definition of ~ we get that U = V and since X \ A is open in W we have

that V' is also open in WW. Hence j is an open map.
O

By setting U = X \ A in the proof above we obtain:

Corollary 3.3.5. The image p(X \ A) is an open subspace of the adjunction
space Z.

We may now identify X \ A with its image under p and view X \ A as an
open subspace of the adjunction space Z.
It is also obvious that p(Y') and p(X \ A) are disjoint and hence

Proposition 3.3.6. Z =p(Y)Up(X \ A)

We may thus consider Z to be the disjoint union of Y and X \ A glued to-
gether by a topology defined using the mapping f. Next we will see that the
separation properties 77 and normality are conserved in adjunction spaces.
Proposition 3.3.7. Assuming that the spaces X and Y are

i) T,

ii) normal,

then so is the adjunction space Z.
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Proof. i) Let z € Z. If z € Y then {z} is closed in Y since Y is 7. Since

ii)

Y is closed in Z, then {z} is closed also in Z.

If z ¢ Y then p~!(z) is one single point in X \ A and it is closed in X
since X is T}. But X is closed in W and so p~'(z) is closed in W, and
so {z} is closed in Z since p is an identification map.

Let F} and F, be two disjoint, closed subsets of Z. Then F; NY and
F>NY are disjoint closed subsets of ¥ and so since Y is normal, there
exist disjoint open neighborhoods U; and U of F1NY and FoNY in
Y, such that U; N U, = (). Since Y is closed in Z, these are also their
closures in 7.

Now define

K, =Ful, Ky = F, Uy,

which are disjoint closed subsets of Z. Then the sets

Ji=p {(Ki)NX, J=p (K)NX
are disjoint and closed in X. Because X is normal, there are disjoint
open neighborhoods Vi and V5 of J; and Js.

Counsider the subsets

Gy =p(Vi\ A)UUj, Gy =p(Va\ A)U U,

of Z. We wish to show that F; C G;.

Let z € F1. If z € Y then z € U; C Gy. If z ¢ Y then there is a unique
point z € X \ A such that z = p(x), and since z € F; C K; we get that
x€Jp CVyandsox € V) \ A and hence z € Gy. Similarly, Fy C Gs.

Furthermore, we want to show that G; NGy = 0. Now, the sets U; and
U, were disjoint by definition. Because V; N V3 = () and p|(X \ A) —
(Z\'Y) is a homeomorphism, we get that p(V; \ A) Np(Va \ A) = 0.
Since U; C Y and p(Vo\ A) C Z\Y we get Uy Np(Va\ A) = (). Similarly
Uy Np(Vi\ A) =0, and hence we get that G; N Gy = 0.

It remains to show that G; and G5 are open in Z. Since p is an
identification map, this is equivalent to showing that p~!(G;) is open
in W fori=1,2.

On one hand,
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p_1<G1)ﬂY: Glﬂy = U1

is open in Y; on the other hand, we get

pHG)NX =\ AU fH(th)

since p~1(U1)NX = f~1(U;). Because f~'(U;) is open in A there exists
an open set Hy in X such that f~1(U;) = AN H;. Since p ' (U;)NX C
J1 C Vi, we have

A U)=AnNH NW,

and so

pHGH)NX =WViI\AUANH, NV) =WVi\A)U(H NW).

The sets V1 \ A and H; NV} are open in X, and hence p~'(G;) N X is
open in X. Hence G, is open in Z. Similarly, G5 is open in Z. Hence
Z is normal.

]

Now that we know a little bit about adjunction spaces we can look at
what it means to form a new space from an original one by adjoining cells.
In this context, an n-cell of the space X will be a subset €} C X for which

there exists a surjective mapping f; : B — e such that f;|B" is a homeo-
morphism.

Definition 3.3.8 (Adjoining cells). Let A be a closed subset of a topolog-
ical space X. The set X is obtained from A by adding n-cells, where n > 0,
iof there is a set of cells {e? . j € J} such that

i) For each j € J, e} C X

i) If €} = e N A then (e?\é”)ﬂ(e?,\é?,)=®f0rj7éj’.

J

iii) X = AU, e

w) X has a topology coherent with {A,e? : j € J}, in other words, the

topology of X is coinduced by the inclusions of the sets A and €7 .
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v) For each j € J there is a map

fi: (B", 8" = (e}, ¢})

such that f;(B") = e?, fj maps B"\ 8" homeomorphically onto e\ el
and € has the topology coinduced by f; and the inclusion map €} — €7.

The map f; is then called a characteristic map for e} and filgn—1 :
St — A is called an attaching map for e;.

The definition above is most suitable when looking for a CW-complex
representation of a given space. Alternatively, one may start in the other
end with a given space A and then attach cells to get a space X with certain
properties. Because, if we have a space A and an indexed collection of maps
{gj : S"' — A : j € J} then we may define a map g : U]EJS”*1 — A
and so there is a space X defined as the adjunction space of the topological
sum AUU].GJEJ” where E7 = B" for all j € J, by the 'mapping g. 'Then the
composition of the inclusion map (EF, S77) < (AUU,, B}, AUU,c,577)
and the projection onto (X, A) is a characteristic map f; : (E},S7) — (X, A)
for an n-cell e} = f;(ET).

Proposition 3.3.9. If A is T} /normal and X is obtained from A by adjoining
n-cells for some n € Ny, then X is Ty /normal.

Proof. Since B" is T} and normal, so is the disjoint union Uie ,B; . Hence it
follows from Proposition ( 3.3.7) that if A is 7} /normal, then so is X. [

Definition 3.3.10 (Strong deformation retract). Let X be a topological
space. The subspace A C X is a strong deformation retract of X if there
is a retraction r : X — A such that if i : A — X then Idx ~ ir rel A. If
F :Idx ~r rel A then F s a strong deformation retraction of X to A.

Example 3.3.11. Forn € N, the set B x0US™ ' x I is a strong deformation
retract of B x 1.

Lemma 3.3.12. If X is obtained from A by adding n-cells then X x OUA x I
is a strong deformation retract of X x I.

Proof. For each n-cell e of X \ A, let f; : (B", 8" 1) — (e, €é") be a char-

~ 376
acteristic map. Let D :_(En x I) x I — B x I be a strong deformation
retraction of B x I to B" x 0U 8™ ! x I. Then there is a map
Dj:(ef xI)x I —XxI
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defined by

D;((f;(2),1),t) = (f; x Id;)(D(z,t,t')) when z € B";t,t' € I.

Now there is a map

D:(XxI)xI—XxI

such that DI|(e§l><I)><I = D;, and D'(a,t,t') = (a,t) for a € Ast,t' € I,
since if v € ANej then x € €} and so Dj(wx,t,t') = (f; x Id;)(D(z,t,t')) =
(f; x Idp)(z,t) = (x,t) since z € f~*(z) € S™'. Finally D’ is a strong
deformation retraction of X x I to X x 0U A x I because D is a strong
deformation retraction.

(Clearly, Do|axs = Idaxr, and if f;(2) € e, then Dy(f;(2),t) = D;(f;(2),t,0)

D strong_def retr (

(f; x 1dr)(D(z,t,0)) fi x Idp)(z,t) = (fj(2),t). On the other
hand, D] defines a retraction r : X x I — X x 0U A x [ since D{(f;(2),t) =
D;(fi(2),t,1) = (f; x Id;)(D(2,t,1)) and since D is a strong deformation
retraction, D(z,t,1) € B" x 0U S™ ! x I; thus (f; x Id;)(D(z,t,1)) €
X x0UA x I, and so D] defines a retraction r. Hence D’ is a strong
deformation retraction.) ]

Definition 3.3.13 (Cofibration). A pair of topological spaces (X, A) (that
is, A is a subspace of X ) has the homotopy extension property with respect to
a space Y if for all mappings f : X — Y and homotopies H : AXI —'Y such
that H(a,0) = f(a) for all a € A, there exists a homotopy F : X x I — Y
such that F|ax; = H and F(x,0) = f(x) for all z € X.

The inclusion i : A — X is a cofibration if the pair (X, A) has the
homotopy extension property with respect to all spaces Y .

Proposition 3.3.14. If X x 0 U A x [ is a strong deformation retract of
X x I then A — X is a cofibration.

Proof. Let Y be some space, and let f : X — Y be a mapping and H :
A x I —Y ahomotopy such that H(a,0) = f(a) for all points a € A. These
now define a new mapping g : X x 0U A x I — Y, which is continuous by
Lemma ( 1.4.1) since both A x I and X x 0 are closed in X x O0U A x [. If
r: X xI— Xx0UAXIis aretraction, then FF =gor: X xI — Y is the
wanted homotopy.

O

Corollary 3.3.15. Since B"x0US™! x I is a strong deformation retract
of B" x I, it follows that the inclusion S"' < B" is a cofibration.
Similarly, the inclusion OI™ — I™ is a cofibration as well.
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Corollary 3.3.16. If X is obtained from A by adjoining n-cells, then A — X
is a cofibration.

3.4 CW-complexes

In this section we define CW-complexes and investigate their topological
properties.

References: [8], [4]

Definition 3.4.1 (CW-complex). A relative CW-complex consists of a

topological space X, a closed subspace A and a sequence of closed subspaces
(X, A)* for k € Ny such that

i) (X, A)° is obtained from A by adjoining 0-cells.
i) for k> 1, (X, A)* is obtained from (X, A)*=! by adjoining k-cells.
i) X = UkeNO<X7 A)k-

iw) X has a topology coherent with {(X, A)* : k € Ny}.

The set (X, A)¥ is called the k-skeleton of X relative to A. If X = (X, A)"
for some n € Ny, then we write dimension (X — A) < n.

An absolute CW-complex is a CW-complezx (X, ().

Remark 3.4.2. Although in the definition we only demand that the topology
of a relative CW-complex (X, A) is coherent with the family of k-skeletons
(X, Ak of (X, A), it is actually true that the topology is coherent with the set
{A e} el is a cell in (X, A)"}:

Assume that U C X is open in (X, A). Then UNA is open in A. Assume
n € Ny, then U N (X, A)" is open in (X, A)" and hence U N e} is open in €
for each n-cell €} in (X, A)".

Conversely, assume that U C X such that UN A is open in A and UNe}
is open in each n-cell €% from (X, A)" for each n € Ny. Then U N (X, A)°
is open in (X, A)° and by induction U N (X, A)" is open in (X, A)" for each
n € N, hence U is open in (X, A).

Example 3.4.3. A simplicial polytope is an absolute CW-complez.
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The following observation is easy to verify:

Remark 3.4.4. Let n € Ny. If X is an absolute CW-complex and the
topological space Y is obtained by adjoining n-cells via mappings S"~ ! — X
whose images lie in X" ', then Y is a CW-complex whose k-skeletons equals
X* for k <mn and X* U the new n-cells for k > n.

Proposition 3.4.5. A compact subset of a relative CW-complex (X, A) is
contained in the union of A and finitely many cells.

Proof. Let C be a compact subspace of the relative CW-complex (X, A).
Assume that C'is not contained in the union of A and any finite colletion of
cells of (X, A); then we can find a sequence of points (x;) in C such that the
x; lie in distinct cells ef'. Denote S = {z; : i € N}

Now the set S is closed in (X, A): S Ne is closed in €} for each 0-cell
ey and so SN (X, A)%is closed in (X, A)°. Furthermore, if SN (X, A)" ! is
closed in (X, A)"! for some n > 1, then SN e’ contains at most one point
which was not contained in S N (X, A)"~! for each n-cell el; hence SNej is
closed in €. It follows that SN (X, A)" is closed in (X, A)" for all n € Ny,
and hence S is closed in (X, A). In particular, S is closed in the compact set
C, and so S is compact.

Similarly, any subset of S is closed, and hence S is discrete. But a discrete
infinite set cannot be compact; hence we get a contradiction. Thus C' is
contained in the union of A and finitely many cells of (X, A). [

Corollary 3.4.6. o A compact subset of an absolute CW-complex X is
contained in a finite union of cells of X.

e A compact subset of a relative CW-complex (X, A) is contained in

(X, A)* for some k € Nj.

o A compact subset of an absolute CW-complex X is contained in X* for
some k € Ny.

Lemma 3.4.7. If f : X — Y s an identification map and C' is a locally
compact Hausdorff space, then f x Id: X x C"—=Y x C s an identification
map.

Proof. We need to show that if U C Y x C is a subset such that V =
(f x Id)~'U is open, then U is open. Let (y,c) € U and choose (z,¢) € V
such that f(z) = y. Now there exists a neighborhood B of ¢ such that
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B is compact and {z} x BC V. Let W = {2z € X : {z} x BC V} =
{z € X : {f(2)} x B C U}. Now V is open and B and each {z} are
compact, so for each z there exist open sets U, of Y and V] of C such
that {2} x B C U, x V! ¢ V. Hence W = U{U, : z € W} is open, and
7Y f(W)) =W - thus f(W) is open, since f is an identification map. Hence
U contains the open neighborhood B x f(W) of (y,c); thus U is open. [

Proposition 3.4.8. If (X, A) is a relative CW-complez then a function H :
(X, A) x I =Y is continuous if and only if it is continuous on A x I and
on e X I for each cell e} of (X, A).

Proof. The topology of the CW-complex (X, A) is coherent with {A, e},
as we already know. That is, we may define an identification map p :
Ujes€iUA — (X, A) from the disjoint union of A and the cells of (X, A) onto
(X, A). By Lemma ( 3.4.7) the mapping px I : Ujeje}‘xIUAxI — (X, A)xI
is also a quotient map. Hence any mapping H : (X,A) x I — Y for
some space Y is continuous if and only if the corresponding map H' :

Ujes€f x IUA x I — Y is continuous - that is, if H is continuous on A x I
and on €7 x [ for each cell €} of (X, A). O

Proposition 3.4.9. If (X, A) is a relative CW-complex then the inclusion
map A — X is a cofibration.

Proof. Let f: (X x0)U (A xI)—Y be a mapping - we now need to show
that f can be extended to X x I. By Corollary ( 3.3.16) there exists an
extension fy : X x 0U (X, A)° x I — Y. Similarly, if we have managed to
extend f to a mapping f,_1 : X x 0U (X, A)" ! x [ — Y then, again by
Corollary ( 3.3.16) there exists an extension f, : X x 0U (X, A)" x [ — Y.

Now define F' : X xI — Y by setting F'(z,t) = f,(z,t) where z € (X, A)".
Now since F' is continuous on (X, A)” x [ for all n € Ny, it is continuous on
A x I and on e} x I for every cell €7 of (X, A); hence by Proposition ( 3.4.8)
it is continuous on (X, A) x I. O

Lemma 3.4.10. For a mapping o : (B", 8" 1, s¢) — (X, A, 2) we have that
[a] =0 in m, (X, A, x0) if and only if « is homotopic relative to S™™1 to some
map B" — A.

Proof. "=" Assume that [a] = 0 in 7,(X, A, zo). Then there is a homotopy

H:(B", 8" s0) x I — (X, A, )

from a to e, : B® — {zo} — X.
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We define a function H' : (B", 5", s0) x I — (X, A, x0) by setting

e t):{ H(gpt), o< <1-}

t
3
H(gr2—2lHll) 1-4< |z <1
Clearly H' is continuous, since when ||z|| = 1—%, then H(:%,2—-2|z|)) =

[zl
H(ﬁﬂ -2(1-9%)) = H(é,t). Note also that

H'(2,0) = H(2,0)=a(z)V z€ B",
oy HEED =€ A o] <}
D= H(EL2—2020) € A, Iz = T because & € $771,
) =«

Thus we see that H’ is a homotopy rel S”! from « to some map B — A,
just like we wanted.

7<" Now we assume that there is mapping o : (F”, S s0) — (X, A, o)
such that o ~ o/ rel "' and o/(B") C A. Then [a] = [o/] in m,(X, A, z0).
A homotopy H : (B", 58" !, s0) x I — (X, A, xo) from o to the constant map
€z, 1s defined by

H(z,t)=a' (1 —t)z +tsg),

and so [a] = [&/] = 0.

[]

Definition 3.4.11 (n-connectedness). Let n € Ny. A topological space X
1s n-connected if every mapping

f:S"— X,

where k < n, can be extended to a mapping B L x.
A pair (X, A) is n-connected if every mapping

f: (B, 8" = (X, A)
is homotopic rel S*~1 to some mapping B - A for any k such that
0<k<n. Y
In the case n = 0 the pair (B, S™') consists of a single point and the

empty set, and so 0-connectedness means that any point in X can be con-
nected by a path to some point in A.
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Note that 0-connectedness in the case of a single space X = (X,0) is
equivalent to path-connctedness, and in the case of a pair (X, A) of spaces
means that every path component of X intersects with A.

Lemma 3.4.12. A topological space X is n-connected for some n € N if
and only if it is path connected and mp(X,x9) = 0 for all xog € X and for all
k=1,..,n.

Proof. 7=" Assume that the topological space X is n-connected for some
n € N. Then any mapping f : S° = {-1,1} — X can be extended to

a mapping B = [—1,1] — X - in other words, X is path connected. In
addition to that, any map f : (S*,py) — (X, 29) can be extended to a map
—k+1

g: B — X when 1 <k <n. Now define a homotopy

h:S*xI—X
by setting

h(z,t) = g((1 = t)z + tpo)

where pg is some point in S™. Then A is a homotopy from f to ¢,,, and
h(po,t) = g(po) for all t € I and hence h is a homotopy rel py.

It follows that [f] = [cs] = O for all maps f : (S* py) — (X, z) and
hence 7 (X, x0) =0 for all k =1, ..., n.

7<«<" Assume that the topological space X is path connected and that
(X, 20) =0 forall k =1,...,n.

Since X is path-connected any map f : S° = {-1,1} — X can be
extended to a mapping [-1,1] = B — X.

Now assume 0 < k < n, and let f: S* — X. Since (X, z9) = 0 for all
1o € X, there is a homotopy h : S¥ x I — X such that h(z,0) = f(z) for all
x € S™and h(x,1) = ¢,, where ¢, is a constant map. Now, since S* < B’

is a cofibration there exists an extension F of the mapping H : S*xI uB "' x1

given by H(z,1) = xo when x € Fkﬂ, H(x,t) = h(z,t) when (z,t) € S¥x I.
Now Fjp is an extension of f over EkH, and hence X is n-connected.
n

Lemma 3.4.13. A pair of spaces (X, A) is n-connected if and only if the
following holds: Every path component of X intersects A and for every point
a€ A and every 1 < k <n,

(X, A,a) =0.
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Proof. ”=" Assume that the topological pair (X, A) is n-connected, and let

x € X. Now the pair (EO, S~1) consist in fact of a singleton set {1} and the
empty set, which we may treat as the singleton set only.

Now the mapping f : {1} — X defined by 1 — x for some z € X is homo-
topic to some mapping g : {1} — X such that f(1) = a € A; hence there is
a path in X from z to a and hence the path component of z in X intersects A.

Furthermore, let 0 < & < n. Then by the definition, any map

Fi (B, 8", s0) — (X, A, a)

is homotopic rel S*~! to some mapping g : (Ek,Sk_l) — (X, A) such
that g(Ek) C A, and thus by Lemma ( 3.4.10), [f] = 0 in m(X, A, a). Hence
Wk(X,A,CI,) = 0.

7<” Now assume that every path component intersects with A and that
(X, A,x0) = 0 for 1 < k < n. Then, given a map f : (Ek,Sk_l,so) —
(X, A, x) where 1 < k < n, this map is homotopic rel S¥~! to a map B = A
by Lemma ( 3.4.10). Furthermore, if f : (B',S71) = ({1},0) — (X, A); by
the assumption there is a path v : I — X from f(1) to some point a € A;
hence the map H : {1} xI — X defined by H(1,t) = (t) defines a homotopy

from f to a map B’ = A. Hence the pair (X, A) is n-connected.
O

Example 3.4.14. For alln € N the pair (B", 5" is n — 1-connected.
Proof. See [8]. O

Lemma 3.4.15. Let X be obtained from A by adding n-cells and let (Y, B)
be a pair of spaces such that

o m,(Y,B,b) =0 forallbe B ifn>1;
e cvery point of Y can be joined to B by a path if n = 0.

Then any map (X, A) — (Y, B) is homotopic rel A to some map X — B.

Proof. n=0

Let f: (X,A) — (Y,B) be a map, and let the 0-cells be points e?, where
j € J. Now for each y; = f(e}) there is a point b; € B such that y; and b;
may be connected with a path o; : I — Y. Now define H : X x [ — Y by
setting
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H(a,t) = f(a) Vtel,ac A
H(e)t)=ay(t) Vtel,jel

Since X is the topological sum of A and the discrete space {e? :j € J},
H is continuous, and H;(X) C B. Hence H is the wanted homotopy.

n>1
Let the characteristic map of each n-cell e} be f; : (E;L, St — (ef,€7), and

let f: (X, A) — (Y, B) be any map. For each n-cell €} there is a well-defined
map

f o fj : (Enasn_laen-i-l) - (Yanf(fj(en-H)))

and since 7, (Y, B, f(fj(en+1))) = 0 we have [f o f;] = 0 and so by Lemma
(1 3.4.10) f o f; is homotopic rel S"~! to some map B" — B. Denote this
homotopy H’, where H} = f o f; and H/(B") C B.

Define H : X x I — Y by setting

H(a,t)=a Vae Ajtel
H(fj(z),t) = H(x,t) Y f;(x) € ¢} where z € B".

The function H is well-defined since H? was a homotopy rel S*~! for all
J € J, and H is continuous on A X I and on e x [ for all j € J. Tt follows
from Proposition ( 3.4.8) that H is continuous, and hence H is the wanted

homotopy.
O

Lemma 3.4.16. Let (X, A) be a relative CW-complex with dimension(X —
A) <n and let (Y, B) be n-connected. Then any map from (X, A) to (Y, B)
is homotopic rel A to some map from X to B.

Proof. We will prove this lemma by induction. First assume that n = 0.
Since X is obtained from A by adding O-cells, and since the 0-connectedness
of (Y, B) means that every point of Y may be joined by a path to some point
of B, we may apply Lemma ( 3.4.15) to get that any map f : (X, A) — (Y, B)
is homotopic rel A to some map X — B.

Now assume that the claim holds for all n < m, and assume that dimension(X —
A) < m and that (Y, B) is m-connected. Let

f:(X,A) — (Y,B)

be any mapping. Now, by the induction assumption, the restriction
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I (X, A A) = (Y, B)

is homotopic rel A to some mapping (X, A)™ ! — B, and by Proposition

(1 3.4.9) this homotopy has an extension H : X x I — Y such that Hy = f,
while H; : (X, (X, A)™!) — (Y, B). But now by Lemma ( 3.4.15), since X
is obtained from (X, A)™~! by adding m-cells, the mapping H; is homotopic
to some map g where g(X) C B - that is, f ~ H; ~ g and g maps X into B.
]

Corollary 3.4.17. Let (X, A) be a relative CW-complex and let (Y, B) be
n-connected for all n € N. Then any map (X, A) — (Y, B) is homotopic rel
A to a map from X to B.

Proof. Let f: (X, A) — (Y, B). By Lemma ( 3.4.16) there exists a homotopy
hY: (X, A)° x I — Y relative to A such that h) = f|(x,ayp and h{((X, A)°) C
B since dimension((X, A)?— A) = 0. But because (X, A)° — X is a cofibra-
tion by Proposition ( 3.4.9) there exists an extension Hy : (X, A)xI — (Y, B)
of h? such that Hy(z,0) = f(z) for all z € X. Now Hy is a homotopy relative
to A.

Now assume that there exist homotopies Hy : (X, A) x I — (Y, B) for
k < n such that

a) Hy_1(z,1) = Hi(z,0) for x € X.
b) Hy is a homotopy rel (X, A)*~1.
c) Hp((X,A)* x 1) C B.

Then considering the map ¢ : ((X, A)", (X, A)" 1) — (Y, B) where g(x) =
H, 1(z,1) for all z € (X, A)" there exists, according to Lemma ( 3.4.16), a
homotopy k" : (X, A)" x I — Y relative to (X, A)"~! such that h) = g and
h?((X,A)") C B. But by Proposition ( 3.4.9) (X, A)” — X is a cofibration
and hence there exists an extension H,, : (X, A) x I — (Y, B) of h" such that
H,(z,0) = H,_1(z,1). Now H, is a homotopy relative to (X, A)"~ 1.

Hence we get a sequence of homotopies Hy : (X, A) x I — (Y, B) such
that

i) Ho(x,0) = f(x) for z € X.
i) Hy(z,1) = Hgya(x,0) for z € X.
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iii) Hj, is a homotopy rel (X, A)*1.
iv) H,((X,A)* x 1) C B.
Now we may define a homotopy H : (X, A) x I — (Y, B) by setting

H(z,1) = Hy(z,1) z € (X, A"

|

H(l’7t) = Hi (ZL‘,

== |
ol

Now using Lemma ( 1.4.4) one sees that H is continuous on (X, A)" x [
for all n € Ny and hence it is continuous on (X, A) x I. Furthermore,
H(z,0) = Ho(x,0) = f(z) for all z € X while H(z,1) C Bforallz € X. O

Lemma 3.4.18. If the space X is obtained from A by adjoining n-cells, then
the pair (X, A) is (n — 1)-connected.

Proof. First consider a simpler case: Assume that X is obtained from A by
adjoining the n-cell ¢" to A. We show that the pair (X, A) is n-connected.

Let 2y € Inte™. Define a subset Y of X by setting

Y=AUe"\{zo} = X \ {20},

and let f : (Ek,Sk’l) — (X, A) be a mapping where 0 < k < n. We
may identify (up to homeomorphism) B" with the standard k-simplex Ay
and S*! with its boundary. Then Y and Inte™ intersect f(Aj) in open
subsets of f(Ag), hence f~}(Y) and f~!(Inte") are open subsets of Aj. By
Lebesgue’s covering theorem we may subdivide Ay into finitely many smaller
simplices such that each simplex belongs either to f~'(Y) or to f~!(Inte™).
This subdivision corresponds to a finite simplicial complex which we may call
K whose underlying set is the same as that of Ay, and since the complex is
finite the topology on the corresponding polytope | K| is the same as that on
Ay - hence | K| = Ay as topological spaces.

Now for each simplex s € K either f(|s|) C Y or f(|s|) C Inte™.
Let A’ be the subpolytope of |K| containing those simplices s € K such

that f(|s|) C Y, and let B be the subpolytope containing such simplices
s € K that f(|s|) C Inte™. Then S*! C A" and A, = A’U B.
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Denote B’ = BN A’ and note that (B, B’) is a relative CW-complex with
dimension(B — B') < k <n — 1. We consider the restriction

flspy : (B, B") — (Inte”, Inte" \ {zo}).

The pair (Inte”, Inte™ \ {zo}) is homeomorphic to (B™, B" \ {0}), and
thus their homotopy groups are the same as that of (B, 5" !). By Example
(3.4.14) (B", 5" 1) is n — 1-connected, and thus by Lemma ( 3.4.16) we have
that f|,p is homotopic rel B’ to a map B — Inte”™ \ {zo}.

This can be extended to a homotopy rel A" from f to a mapping f’ :
—k
B CY.

Now A is a strong deformation retract of Y (in a similar way that S™!
is a strong deformation retract of B \ {0}). It follows that f’ is homotopic

rel S*~! to a mapping f” such that f”(Ek) C A. But then f ~ f" rel S¥1,
and it follows that (X, A) is n — 1-connected.

Now we return to the original question. Let X be obtained from A by
adjoining n-cells (an arbitrary amount of such cells), and let f : (Fk, Sk=1) —
(X, A) where 0 < k < n. Now since B' is compact, its image f(Ek) is
compact and so by Lemma ( 3.4.5) it is contained in the union of A and
finitely many n-cells - that is, f (Ek) C AUelU...Uel'. Hence we may write

£ (B S = (X0, A)

where X (™) is the space obtained by adjoining only the cells e?, ..., e".
But although we adjoin all cells at once we would obtain exactly the same
space by adjoining first €7, then e} and so on. Denote by X the space
obtained by adjoining cells e7,...,e}. Now by our previous calculations the
pair (X X(m=1) is (n — 1)-connected, and so there exists a mapping f™ :
B" — XD guch that f =~ f™ rel S¥~1. Similarly we construct f : B -
X0 forall i = 1,...,m — 1 (X©@ = A) and thus we obtain f ~ f™ ~
fmt ~ ..~ f! where all homotopies are rel S*~! and fl(Ek) C A It
follows from this that (X, A) is n — 1-connected.

O

Theorem 3.4.19. For any relative CW-complex (X, A) the pair (X, (X, A)")
s m-connected for all n € Ny.

Proof. Let (X, A) be a relative CW-complex, and let n € Ny. We will start
the proof of the theorem by proving that for any m > n, the relative CW-
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complex ((X, A)™, (X, A)") is n-connected by induction on m.
If m =n+1, then ((X, A)™, (X, A)") is n-connected by Lemma ( 3.4.18).

Now make the inductive assumption that ((X, A)™~!, (X, A)") is n-connected,
and let f : (Ek, Sk — (X, A)™, (X, A)™), where 0 < k < n. Then we may
write

=k m m—
f:(B, 8 — (X, 4™, (X, 4)"7)

and ((X,A)™, (X, A)™1) is m — 1-connected by Lemma ( 3.4.18) and
thus it is also n-connected. It follows that there exists a mapping ¢ :
B - (X, A)™~1 such that f ~ g rel S¥~!. But then g : (Fk,Sk_l) —
(X, A)™ 1 (X, A)") and by the inductive assumption ((X, A)™ 1 (X, A)")
is n-connected so there exists a mapping h : B - (X, A)™ such that g ~ h
rel SF1.

It follows that

f o~ hrel S¥1
and it follows that ((X, A)™, (X, A)") is n-connected.

Now let’s return to the original task. Assume that f’ : (Ek, Sk=1y —
(X, A),(X,A)") where 0 < k < n. Now since B is compact, so is f(Fk)
and thus by Corollary ( 3.4.6) f(Ek) C (X, A)™ for some m € Ny. We may
assume that m > n.

Then we may consider the function f” as a function
J'1 (B8 = (XA, (A
and so by the previous comment there exists a mapping ¢’ : B - (X, A"

such that f’ ~ ¢’ rel S¥~1. Hence (X, (X, A)") is n-connected.
[l

3.5 Weak homotopy equivalence

The notion of weak homotopy equivalence is generally weaker than that of
homotopy equivalence, and may be easier to prove. In this section we will
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show that in the case of a CW complex the two are actually equivalent.

Reference: [§]

Definition 3.5.1 (n-equivalence, weak homotopy equivalence). Let
X and'Y be topological spaces and let n € N. A mapping f : X — Y is an n-
equivalence if f induces a 1 —1 correspondence between the path components
of X and'Y and if for each x € X the induced map

fo i1 (X, z) = 7 (Y, f(x))

15 an isomorphism when 0 < ¢ < n and an epimorphism when q = n.
A mapping f : X — Y is a weak homotopy equivalence or an oo-
equivalence if it is an n-equivalence for all n > 1.

A weak homotopy equivalence is not generally a homotopy equivalence:

Example 3.5.2. Let Ay = Ny and Ay = {0, % : n € N} with their subspace
topologies from R. Now Ay is not a CW complex because it does not have the
discrete topology.

Let f: Ay — As be defined by f(0) = 0, f(n) = % Now f is contin-
uous since Ay is discrete, and f. : mo(A1) — mo(Az) is clearly a bijection.
Furthermore, if f : S¥ — A;, i = 1,2 is continuous then f is the constant
map since its image must be connected. Hence (A1) = 0 = mi(Az) for all
k € N. It follows that f, is an isomorphism for all k € N and hence f is a
weak homotopy equivalence. However, f is not a homotopy equivalence:

Assume that g is a homotopy inverse of f; then if a € Ay and H :
Ay X T — Ay such that H : (go f) =~ ida,; then Hy(a) : I — Ay defines a path
in Ay from (go f)(a) to a and since Ay is totally disconnected it follows that
(go f)(a) =a. Hence go f = Ida,. Similarly f og = Ida,, and so f is a
homeomorphism. But Ay and Ay are not homeomorphic since As is compact
and Ay is not.

Thus f 1s a weak homotopy equivalence, but not a homotopy equivalence.

i

In order to prove the following lemma we need the notion of a mapping
cylinder Z; of a function f : X — Y. We define Z; as the quotient space of
the topological sum of X x I and Y by identifying every point (z,1) € X x I
with the corresponding point f(x) € Y.
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Figure 3.1: Top: A piece of the space A;. Bottom: The space A,.

Y

Figure 3.2: The mapping cylinder Z; of a mapping f : X — Y.
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In other words Z; consists of equivalence classes [z,t] = {(z,t)} if t €
[0,1], [z, 1] = [f(2)] = [y] = {y,(x,1) : f(z) =y} if y € f(X) and [y] if
y €Y\ f(X). Then there is an imbedding i : X — Z; defined by z — [z, 0]
and an imbedding j : Y — Z; defined by y +— [y]. By means of these
imbeddings X and Y may be viewed as subspaces of Zy.

Furthermore, we may define a retraction r : Zy — Y by setting r([z, t]) =
[f(z)] for all x € X and r([y]) = [y] for all y € Y.

Now it is clear that roj : Y — Zy — Y = Idy, and furthermore the
function H : Zy x I — Z; defined by

H([z,t],s) = [r,t+s(1—1t)], VereXandVitsel
H([yl, s) = ly), VyeYandVsel

defines a homotopy H : Idz, ~ jor, since Ho([z,t]) = [z,t] and
H,([z,t]) = [x,1] = [f(z)]. Hence r is a homotopy equivalence.

Naturally, the properties of the mapping cylinder Z depend on the prop-
erties of the mapping f, and in particular:

Proposition 3.5.3. If the mapping f is an n-equivalence, then the pair
(Z, X) is n-connected.

Proof. Let f : X — Y be a mapping, and let Z; be the mapping cylinder
of f. Then f = r ot where ¢ and r were defined above, and where r is a
homotopy equivalence. Hence f is an n-equivalence if and only if ¢ : X — Z¢
is an n-equivalence. Now, if f is an n-equivalence then i is as well, so consider
the exact homotopy sequence of the pair (Z;, X):

o (X w0) 5 o (Zy, ) D ma(Zy, X w0) D Tt (X, 0) 25 1 (24, 20)

Now Im(d) = Ker(i.) = 0, and since i, is surjective, Ker(d) = Im(j.) =
Im(j. oix) = 0 by the exactness of the sequence; hence ¢ is injective and
so it follows that m,(Zy, X, x¢) = 0. Similarly m(Z¢, X, z9) = 0 whenever
1<k <n.

Furthermore, since f induces a 1-1 correspondence between the path com-
ponents of X and Y then every point of Zy can be joined to some point of
X by a path. It follows that (Zf, X) is n-connected.

O

Lemma 3.5.4. Let f : X — Y be an n-equivalence (n finite or infinite)
and let (P, Q) be a relative CW-complex with dimension(P — Q) < n. Given
maps
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g:Q — X, h:P—Y
such that h|g = f o g, there exists a map

g:P—X
such that ¢'|QQ = g and fog ~h rel Q.

Proof. Denote by Z; the mapping cylinder of f with inclusion maps i : X —
Zyand j:Y — Zg, and with the retraction r : Zy — Y which is a homotopy
inverse of j.

Now recall the homotopy H : Zy x I — Z¢ from above and use it to form
a new homotopy H' : Q) x I — Z; by setting

H' =Ho (i x Id;)o (g x Idy).

Then H'(q,0) = (H o (i x Id;))(g(q),0) = H([g(q),0], l9(q),0] =

0) =
H([g(q

i(9(q)) = (i 0 9)(q) and H'(q, 1) = (H o (i x Id))(g(a), 1 ),0},1) =
l9(a), 1] = j(f(9(q))) = (j o fog)g), hence H :iog>jo fog=johlg
Furthermore, the composition r o H’ is invariant with respect to t € I. That

is, 7 o H' is a homotopy rel Q.

By Lemma ( 3.4.9) there exists a map h' : P — Zy such that h/|g =iog
and such that roh’ ~ rojoh rel Q. We may then consider A’ as a mapping
(P,Q) — (Zy, X). Because (Zy, X) is n-connected and dimension(P — Q) <
n we get from Lemma ( 3.4.16) (or from Corollary ( 3.4.17) in the infinite-
dimensional case) that A’ is homotopic rel @) to some mapping ¢’ : P — X.
Then ¢'|g = ¢g and

fog’:roiog’:roh/:rojoh:h

where all the homotopies are rel (). Hence ¢’ is exactly as we wanted it
to be.
O

In the set of all functions f : X — Y we may define an equivalence
relation by setting f ~ g & f =~ g. The equivalence class of f may then
be denoted [f]. The set of all such equivalence classes [f] is from now on
denoted [X;Y] - that is, [X;Y]|={[f]: f: X = Y}.

Lemma 3.5.5. Let f: X — Y be a weak homotopy equivalence, and let P
be a CW-complex. Then the induced map

fo o [P X] — [P;Y]
defined by [g] — [f o g] is a bijection.
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Proof. We apply Lemma ( 3.5.4) to the relative CW-complex (P,0). As-
sume that h : P — Y. Now there is a mapping ¢’ : P — X such that
fog =~ h, or in other words, there is a class [¢/| € [P;X] such that
f«([d']) = [f o ¢'] = [h] € [P;Y]. Hence f. is surjective.

To prove injectivity, assume that we have two mappings gg, g1 : P — X
such that fo gy ~ fo g - then there is a map g : P x I — X such that
g(x,0) = go(z) and g(x,1) = g1(x) for x € Pand amap H: Px [ — Y
such that H|P x I = f o g. Now by applying Lemma ( 3.5.4) to the relative
CW-complex (P x I, P x I) we find that there is a mapping ¢ : P x I — X
such that ¢/|P x I = g. Then ¢ : go ~ ¢, and so [go] = [¢1]. Thus f, is
injective.

]

Proposition 3.5.6. A mapping between CW-complexes is a weak homotopy
equivalence if and only if it is a homotopy equivalence.

Proof. 7<=” Let X and Y be topological spaces, and let f : X — Y be a
homotopy equivalence with homotopy inverse g : Y — X. Then (g o f)(x)
belongs to the same path component as x for all x € X; hence (g o f). :
mo(X, zo) — mo(X, x0) is the identity mapping. Similarly (fog). = Idr v,y
and so f induces a 1 — 1-correspondence between the path components of X
and Y.

Furthermore, by Proposition ( 3.1.3), the induced map

fo: (X, 20) — T (Y, f(20))

is a group isomorphism for all n > 1 and all base points xg € X. Hence
f is a weak homotopy equivalence.

”=" Now assume that f : X — Y is a weak homotopy equivalence. Then
by Lemma ( 3.5.5) f induces bijections

L VX = [V3Y] L [XGX] = (XY

Now, if g : Y — X is a mapping such that f.([g]) = [Idy], then since
f«(lg]) = [f o g] = [Idy] it follows that f o g ~ Idy. Furthermore,

fllgo fl) =1folge Nl =I[(fog)o fl=ldy o f]=[foldx] = f([ldx]),

and hence by the injectivity of f, it must be true that go f ~ Idy.
It follows that f is a homotopy equivalence.
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3.6 A metrizable ANR is homotopy equiva-
lent to a CW complex

So we get to the point:

Theorem 3.6.1. Any metrizable ANR is homotopy equivalent to some ab-
solute CW-complez.

Let Y be a metrizable ANR. From Theorem ( 2.6.9) we know that there
exists a simplicial polytope K with the Whitehead topology which dominates
Y - that is, there exist mappings

. K —-Y

vV:Y - K

such that the composed map ® oW : Y — Y is homotopic to Idy.
From Example ( 3.4.3) we know that K is in fact an absolute CW-
complex. The following is then clear:

Proposition 3.6.2. Any metrizable ANR is dominated by an absolute C'W-
complex. [J

Hence Theorem ( 3.6.1) follows from the following theorem:

Theorem 3.6.3. A space which is dominated by an absolute CW-complezx is
homotopy equivalent to some absolute CW-complex.

Proof. Assume that the situation is as described above.

The mappings ¢ and ¥ induce homomorphisms

O, ma (K ko) = T (Y, @(Ko)); W (Y 90) — (K U (y0))

between homotopy groups for all ky € K and yg € Y where n € N and
functions between families of path components in the case of n = 0. Since
® o U ~ [dy there exists for all n € Ny an isomorphism (or bijection in the
case n = 0) s, : (Y, ®(ko)) — 7, (Y, y0) such that s, 0 (Lo V), = Id, (viy);
hence even (® o W), is an isomorphism. It follows that ®, is a surjection and
that W, is an injection for all n € N.
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The mapping @, is not generally an isomorphism. However, we may
adjoin cells to K and obtain a larger absolute CW-complex L in such a way
that ® extends to a function @ defined on the new space which induces
isomorphisms @, : 7, (L,ly) — 7, (Y, D'(ly)) for all [y € L and for all n € N
and a bijection when n = 0. We may define a mapping ¥’ : Y — L by setting
U’ =40 W where i : K — L is the inclusion mapping. Then if y € Y,

(@0 W')(y) = (V'(y)) = '(U(y)) = D(¥(y)) = (P ¥)(y)

and it follows that ® o ¥/ = ® o U ~ [dy. Now there exist again
isomorphisms s, : 7, (Y, ®' (ko)) — m,(Y,90) such that s, o (' o ¥'), =
Idz, (vyo); then @) o W, = (O’ o V'),

is an isomorphism and since ®’ is an isomorphism for all n then so is ¥’.
It follows that

(U 0@, : (L, ly) — mn(L, (W' 0 @) (ly))
is an isomorphism for all [y € L and hence ¥’ o &' is a homotopy equiva-
lence.
Now if f: L — L is a homotopy inverse of ¥ o ', then we obtain
U'od' ~ (Wod')o(Vod'of) = Uo(d'oU)od'of ~ Woldyod'of = Wod'of ~ Idy.
We already know that ® oW’ ~ Idy, and hence & : L — Y is a homotopy

equivalence with homotopy inverse V' : Y — L.

Hence it only remains to construct the absolute CW-complex L with the
extended mapping & : L — Y such that & : 7, (L,ly) — 7. (Y, D'(lp)) is
an isomorphism for all n € N and a bijection in the case n = 0, for all base
points [y € L and such that ®'|K = &.

We will construct the space L and the mapping &' by inductively adding
cells and extending the mapping one step at a time.

We set M = K and LY = (M")? = K° Now M? is an absolute CW-
complex containing K and L is its 0-skeleton.

First choose some base point ky € K and consider the induced mapping

®, : mo(M°, ko) = mo(K, ko) — mo(Y, (ko))

between the families of path components of K and Y, respectively. It is
surjective, as stated earlier. If &, is injective then it is a bijection and we
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may set L' = K. In case ®, is not injective, then we have some mapping
fi 0 (SY1) = (S°1) — (K, ko) such that f; ~ € is not true but ® o f; ~ ¢
(That is, f;(—1) and f;(1) lie in different path components of K but are taken
to the same path component of Y by ®).

Since by Theorem ( 3.4.19) (K, K°) is 0-connected, every path compo-
nent of K intersects K°; hence we may define a homotopy H®: S? x [ — K
such that H) = f; and H} = g; where g; : S} — K". Now we may use this
mapping g; to adjoin a 1-cell e; to K° = LY.

Since [® o g;] = 0 it follows that (® o g;)(S?) is contained in one path
component and so there exists an extension 7; : E; —Y of Poy,.

We repeat this procedure for each ¢ € J, where {[f;] : i € J} = {[f] €
mo(K)|[f] #O0A[® o f] =0}, and then repeat the whole thing for each base
point kg € K.

Let {e} : i € I} be the set of all 1-cells added and let their attaching
maps be f; for all i € I.

Now define the adjunction space M* = KU J,_, e}; this M is an absolute

i€l i
CW-complex (See Example ( 3.4.4). Also define L' = (M), the 1-skeleton
of M*.

In order to extend the mapping ® we define a new mapping
* . i -1
d .KUUZEIBZ. —Y

by setting

(k) =D(k)if ke K;  ®*(t) =(t)ift € B,
Now we may define a function

ol M Y

by setting

o' (m) = &*(z)

where € 7~ '(m) where 7 : KU{J,.;,B} — M" is the canonical pro-
jection. Now, since 7 is a quotient map and ®* is continuous, ®! is also
continuous. Furthermore,
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q)i . 7T0(M1, ko) — Wo(}/, (I)IU{?()))

is a bijection for each base point ky € K. It is then easy to see that this
map is in fact a bijection for all basepoints ko € M.

Now let n € N and assume that we have found an absolute CW-complex
M™ and a mapping " : M" — Y such that K is a subcomplex of M" and
such that

Q" (M",mg) — (Y, P (my))

is a bijection for k£ = 0 and an isomorphism for k£ € {1,...,n — 1} for all
base points mgy € L™, where L" = (M™)".

Consider the induced mapping

Q" (M"™,mg) — (Y, D" (my)).

Since ®"o¥" = Go W ~ [dy it follows that &7 oU? is an isomorphism and
we see that @7 is a surjection for all base points my. In case ®7 is injective
for all mg, set M™1 = M™ and " = ®". In case P is not injective for
each base point mg, denote by

{lfi]-iel}
the set of generators of Ker®”. Then the maps f; : (S™, s0) — (M™,my)
are continuous.

Let i € I. Then f; : (S™,s9) — (M™, L") where dimension(S™ — s9) <n
and (M™, L™) is n-connected by Theorem ( 3.4.18), hence by Lemma ( 3.4.16)
there exists a mapping ¢g; : S™ — L" such that f; ~ g;. Now we use this
mapping g; to adjoin an n + 1-cell ! to (M™)", and we do the same for
each ¢ € I. Repeat the whole procedure for all base points my € L", and
denote by {e*! : i € I'} the set of new cells, and let their attaching maps
be f; for alli e I'.

We define the adjunction space M"*!' = M" U J,.,; ™" and L' =
(M™)" 1 which makes M™ ! an absolute CW-complex containing K and
L™ its n + l-skeleton (See Example ( 3.4.4) for a proof that M™*! is an
absolute CW-complex).

Since for each i € I [f;] = [¢;] we have that ®" o g; ~ ¢ where € : S" — Y
is a constant map. We may extend the constant map € to EnH, and thus
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since the inclusion S — B is a cofibration, we may extend the whole
homotopy to B"" % I. Tt follows that there exists a continuous extension
(®™)F of ®" o g; to B = E?H. Note that the only reason why it is possi-

ble to extend this mapping ®"og; is that it is homotopic to the constant map!

We define the mapping (®"*1)* : M”UUZ.GIE?H — Y by setting

(@) (2) = 3" (2) if w € M™;  (®"T)*(2) = (") (x) itz € B}

Because (®"1)*(z) = (®")i(z) = (®"o f;)(z) = ("™1)*(fi(x)) whenever
x €S = GE?H there is a well-defined function ®"*' : M — Y given by

" (m) = (") ()

_ - —n+1 . .
where z € 7~*(m) and where m : M"OJ,.,;B; — M""! is the canonical
projection. Because 7 is a quotient map ®"*! is continuous.

Claim: Now (®"*1), : mp(M™ mg) — (Y, o) where yo = "1 (my)
is an isomorphism when k£ = 1,...,n and a bijection when k = 0 for all base
points mqg € L".

Proof: Let k € {1,2,....,n — 1} and let g : (S*,s) — (M"™"! mgy) where
mgy € L™ be such that ®"*1([g]) = 0 € m,(Y,y0). Then since dimension(S* —
s) <n and (M™* M™) is n-connected there exists a mapping h : S¥ — M"
such that g ~ h rel 5. Then

[@" 0 h] = [@"" 0 g] = 0 € mi(Y, 10)

and since ®7 is an isomorphism, A is nullhomotopic in M™. But then g is
nullhomotopic in M™* and so ®7*! is injective. It is easy to see that ®7+!
is also surjective since ®7 was.

For the homotopy classes [f;] where i € I we now have that f; ~ ¢g; = moi

where ¢ : 5" — EZH — M”UUiEIE?H and since E?H is contractible, 7 is
nullhomotopic, and thus so is w04 = f;. Hence [f;] = 0 € m,(M"™"! my) for

all base points my € L".

Since the [f;] were the generators of Ker®? and all the elements of
7o (M™ ' myg) correspond to elements of m,(M™ mg) the [fi] are also gen-
erators of Ker®"*!. But since they are all zero in 7, (M"™"! my), it follows
that Ker®"! = 0. Hence ®" : 1, (M"™ mg) — m,(Y, yo) is injective and
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it is of course surjective since ®7" was surjective.

Finally, when constructing M™! from M™ we did not add any new path

[

components; hence mo(M™ " mg) = mo(M™, mg) and so ®7*! is a bijection
when k = 0 for all base points my € L™.

Furthermore, one can easily see that the argument holds also for base
points mg € L™, O

We define the CW-complex L to be the one whose n-skeleton is L™ for all
n € Ny and we define the mapping V' : L. — Y by setting
V'(z)=V"(z)ifz € L"

Now the mapping W’ is continuous because it is continuous on every L™.
Claim: The mapping

U, (L) — 7o (Y, 9 (1))

is an isomorphism when n € N and a bijection when n = 0 for all [, € L.

Proof: Let n € N. Now W/ is surjective since all of the U were so.
Assume that [f] € KerV.. Then f: (5™ s) — (L,ly), but since S™ is com-
pact, then so is f(S™) and so by Proposition ( 3.4.6) f(S™) C L™ for some
m € Nyg. We may assume m > n. Now V"o f = U o f ~ ¢ rel s where € is
the constant map; hence [f] € KerW¥? - but Ker¥?} =0 € w,(M™,1ly) and
hence [f] =0 € m,(L, o).

Now assume n = 0. Since adding n-cells for n > 1 did not add or remove
any path components to or from those in L° we have that ¥, : my(L,ly) —
mo(Y, W' (1)) is a bijection.

Hence Theorem ( 3.6.3) has been proved.

The proof of Theorem ( 3.6.1) is hereby completed. [

Corollary 3.6.4. A topological manifold is homotopy equivalent to a C'W-
complez.

Proof. By Theorem ( 2.7.7) a topological manifold is a metrizable ANR, and
hence by Theorem ( 3.6.1) homotopy equivalent to some CW-complex. [
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