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Chapter 1

Introduction

1.1 Thanks

First of all, I would like to thank my supervisor Erik Elfving for suggesting
the topic and for giving valuable feedback while I was writing the thesis.

1.2 The problem

The goal of this Pro Gradu thesis is to show that a topological manifold has
the same homotopy type as some CW complex. This will be shown in several
”parts”:

A) A metrizable ANR has the same homotopy type as some CW complex.

i) For any ANR Y there exists a dominating space X of Y which is
a CW complex.

ii) A space which is dominated by a CW complex is homotopy equiv-
alent to a CW complex.

B) A topological manifold is an ANR.

1.3 Notation and terminology

Just a few remarks on notation: By a mapping (map) I will always mean a
continuous single-valued function.

By a neighborhood of a point x or a subset A of a topological space X
I will always mean an open subset of X containing the point x or the set A
unless otherwise is stated.
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A covering, however, does not have to be made up by open sets. If it is,
then I will refer to it as an open covering. Similarly, a closed covering is a
covering which consists only of closed sets.

I will assume that anything which can be found in Väisälä’s Topologia
I-II is already familiar.

Some notation:

I = [0, 1] ⊂ R
Z+ = N = {1, 2, 3, ...}
N0 = {0, 1, 2, 3, ...}
R+ = [0,∞[
∪̇ = disjoint union.

1.4 Continuity of combined maps

This section contains a couple of useful basic lemmas which will be used
many times throughout the thesis.

Reference: [7]

Suppose that {Xi : i ∈ I} is a family of subspaces of a topological space
X such that X =

⋃

i∈I Xi, and suppose that Y is some topological space.
Assume that for each i ∈ I there is defined a mapping fi : Xi → Y such that
if Xi ∩ Xj 6= ∅ then fi|Xi∩Xj

= fj|Xi∩Xj
. We wish to define a new combined

mapping f : X → Y by setting f |Xi = fi for all i ∈ I, and the question is
whether such a function would be continuous or not.

Lemma 1.4.1 (The glueing lemma). Assume that I is finite and that
each Xi is a closed subset of X. Then f is continuous.

Proof. Let A be a closed subset of Y - then f−1(A) = ∪i∈If
−1
i (A) is closed

since each f−1
i (A) is closed in Xi and thus in X (Xi is closed in X) by the

continuity of fi and the union is finite. Hence f is continuous.

Lemma 1.4.2. If x is an interior point of one of the Xi, then f is continuous
in x.

Proof. Note that there is now no restriction on the set I, and the Xi are
not necessarily closed. Let x be an interior point of, say, X1 and let U be a
neighborhood of f(x) in Y . Since f1 is continuous there is a neighborhood
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V of x in X1 such that f(V ) = f1(V ) ⊂ U . Now V is open in X1 and so
V = X1 ∩ W for some open subset W of X, and hence V ′ = V ∩ Int(X1) =
W ∩ Int(X1) is an open neighborhood of x in X and f(V ′) ⊂ f(V ) ⊂ U .
Hence f is continuous in x.

Definition 1.4.3 (Neighborhood-finiteness (also called local finite-
ness)). A family {Aα : α ∈ A } of sets in a topological space X is called
neighborhood-finite if each point in X has a neighborhood V such that V ∩
Aα 6= ∅ for only finitely many α ∈ A .

Lemma 1.4.4. If {Xi : i ∈ I} is a neighborhood-finite closed covering of X,
then f is continuous.

Proof. Let x ∈ X be arbitrarily chosen; it now suffices to show that f is
continuous in x. Since {Xi : i ∈ I} is neighborhood-finite, there exists
a neighborhood U of x which meets only finitely many Xi. Now U ∩ Xi is
closed in U for all i and so by Lemma ( 1.4.1) the restriction f |U is continuous.
Now we may add U to the original collection of Xis; it no longer satisfies
the assumptions of this lemma but since x is an interior point of U , f is
continuous in x by Lemma ( 1.4.2) Now f is continuous in all of X since x
was arbitrarily chosen.

1.5 Paracompact spaces

The goal of this chapter is to prove that a metrizable space is paracompact.
Reference: [1]

Proposition 1.5.1. Let {Aα : α ∈ A } be a neighborhood-finite family in a
topological space X. Then:

(A) {Aα : α ∈ A } is also neighborhood-finite.
(B) For each B ⊂ A ,

⋃

{Aβ : β ∈ B} is closed in X.

Proof. (A) Let x ∈ X. Then there is a neighborhood U(x) such that Aα ∩
U(x) = ∅ for all except finitely many α. If Aα ∩ U(x) = ∅ for some α,
then Aα ⊂ U(x)c, and since U(x) is open it follows that Aα ⊂ U(x)c and so
Aα ∩ U(x) = ∅ and so (1) holds.

(B) Let B =
⋃

β∈B
Aβ. Now, if x /∈ B, then by (A) there is a neighbor-

hood U of x which meets at most finitely many Aβ, say Aβ1
, ..., Aβn

. In that
case, U ∩

⋂n

i=1 A
c

βi
is a neighborhood of x not meeting B and hence Bc is

open.
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Proposition 1.5.2. Let {Eα : α ∈ A } be a family of sets in a topological
space Y , and let {Bβ : β ∈ B} be a neighborhood-finite closed covering of Y .
Assume that each Bβ interesects at most finitely many sets Eα. Then each Eα

can be embedded in an open set U(Eα) such that the family {U(Eα) : α ∈ A }
is neighborhood-finite.

Proof. For each α define U(Eα) = Y −
⋃

{Bβ : Bβ ∩Eα = ∅}. Each U(Eα) is
open by 1.5.1 (B), since {Bβ} is a neighborhood-finite family of closed sets.
We show that {U(Eα) : α ∈ A } is neighborhood-finite:

It follows from the definition of U(Eα) that Bβ ∩ U(Eα) 6= ∅ ⇔ Bβ ∩
Eα 6= ∅. Therefore, since each Bβi

intersects at most finitely many Eα,
the set Bβi

intersects at most finitely many U(Eα). By the neighborhood-
finiteness of {Bβ} any y ∈ Y has a neighborhood V intersecting only finitely
many Bβi

, i = 1, ..., n, and hence V ⊂
⋃n

i=1 Bβi
which as a finite union

intersects only finitely many U(Eα). Since Eα ⊂ U(Eα) for all α then the
claim holds.

Definition 1.5.3 (Refinement of a covering). A refinement of a covering
{Aα : α ∈ A } of a topological space Xis a covering {Bβ : β ∈ B} such that
for every set Bβ where β ∈ B there exists a set Aα where α ∈ A such that
Bβ ⊂ Aα.

Example 1.5.4. A subcovering is a refinement of the original covering.

Definition 1.5.5 (Paracompact space). A Hausdorff space Y is paracom-
pact if every open covering of Y has an open neighborhood-finite refinement.

Example 1.5.6. A discrete space is paracompact.
A compact space is paracompact.

Theorem 1.5.7 (E. Michael). Let Y be a regular space. The following are
equivalent:

(A) Y is paracompact.
(B) Each open covering of Y has an open refinement that can be decom-

posed into an at most countable collection of neighborhood-finite families of
open sets (not necessarily coverings).

(C) Each open covering of Y has a neighborhood-finite refinement, whose
sets are not necessarily open or closed.

(D) Each open covering of Y has a closed neighborhood-finite refinement.

Proof. ”(A) ⇒ (B)”
Follows from the definition of paracompactness.
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”(B) ⇒ (C)”
Let {Uβ : β ∈ B} be an open covering of Y . By (B) there is an open
refinement {Vγ : γ ∈ G } where G =

⋃

n∈N
An is a disjoint union such

that{Vα : α ∈ An} is a neighborhood-finite family of open sets (but not
necessarily a covering).

For each n ∈ N, let Wn =
⋃

α∈An
Vα. Now {Wn : n ∈ N} is an open cov-

ering of Y . Define Ai = Wi −
⋃

j<i Wj. Then {Ai : i ∈ N} is a covering, since
⋃

i∈N
Ai =

⋃

i∈N
Wi = Y and so {Ai} is a refinement of {Wi}. Furthermore,

{Ai} is neighborhood-finite, since the neighborhood Wn(y) of y ∈ Y , where
n(y) is the first i ∈ N for which y ∈ Wi, does not intersect Ai whenever
i > n(y).

Claim: Now {An ∩ Vα : α ∈ An, n ∈ N} is a refinement of {Uβ}.
Proof: Let y ∈ Y . Then there exists n ∈ N and α ∈ An such that y ∈ Vα.
Let n0 be the smallest such integer n. Then y ∈ Vα0

for some α0 ∈ An0
, and

y ∈ Wn0
but y /∈ ∪i<n0

Wi; hence y ∈ An0
and thus y ∈ An0

∩ Vα0
. Thus

{An ∩ Vα : α ∈ An, n ∈ N} is a covering, and clearly it is a refinement. �

Moreover it is neighborhood-finite since each y ∈ Y has a neighborhood
intersecting at most finitely many An, and for each n the point y has a neigh-
borhood intersecting at most finitely many Vα where α ∈ An.

”(C) ⇒ (D)” Let A be an open covering. To each y ∈ Y , associate a
neighborhood Uy ∈ A of y. Now, since Y is regular, there exists disjoint
neighborhoods of y and U c

y - let Vy be the neighborhood of y. It follows

that y ∈ Vy ⊂ V y ⊂ Uy. The family {Vy : y ∈ Y } is an open cover-
ing of Y ; hence, by the assumption it has a neighborhood-finite refinement
{Ay : y ∈ Y }. By Proposition ( 1.5.1) {Ay : y ∈ Y } is also neighborhood-
finite, and Ay ⊂ V y ⊂ Uy; hence {Ay : y ∈ Y } is a closed neighborhood-finite
refinement of A . Hence every open covering of Y has a closed neighborhood-
finite refinement.

”(D) ⇒ (A)” Let U be an open covering of Y , and let E be its closed
neighborhood-finite refinement. Now for each y ∈ Y there exists a neighbor-
hood Vy which meets at most finitely many sets E ∈ E . Using {Vy : y ∈ Y },
find a closed neighborhood-finite refinement B. Since each B ∈ B inter-
sects at most finitely many sets E ∈ E , then by Proposition ( 1.5.2) each
E ∈ E can be embedded into an open set G(E), such that {G(E) : E ∈ E } is
neighborhood-finite. If we associate to each E ∈ E a set U(E) ∈ U such that
E ⊂ U(E), then {U(E)∩G(E)} is a neighborhood-finite open refinement of
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U .

Definition 1.5.8 (Star, barycentric refinement, star refinement). Let
U be a covering of a space Y . For any B ⊂ Y , the set

⋃

{Uα ∈ U : B∩Uα 6= ∅}
is called the star of B with respect to U, denoted St(B,U).

A covering B is called a barycentric refinement of the covering U if the
covering {St(y, B) : y ∈ Y } refines U.

A covering B = {Vβ : β ∈ B} is a star refinement of the covering U if
the covering {St(Vβ,B) : β ∈ B} refines U.

Note that if B is a star refinement of U then it is also a barycentric
refinement, since for each y ∈ Y there exists a set V ∈ B such that y ∈ V ,
and clearly St(y, B) ⊂ St(V,B) ⊂ U for some U ∈ U.

If every covering of a space Y has a barycentric refinement, then it also
has a star refinement:

Proposition 1.5.9. Let U be a covering of a space Y . A barycentric refine-
ment D of a barycentric refinement B of U is a star refinement of U.

Proof. Let W0 ∈ D, and choose some y0 ∈ W0. For each W ∈ D such that
W ∩ W0 6= ∅, choose a z ∈ W ∩ W0. Then W ∪ W0 ⊂ St(z,D) ⊂ V for
some V ∈ B. Because, then, y0 ∈ V it follows that V ⊂ St(y0,B) and
so St(W0,D) ⊂ St(y0,B) ⊂ U for some U ∈ U, since B is a barycentric
refinement of U.

Thus a covering U has a star refinement if and only if it has a barycentric
refinement.

Theorem 1.5.10 (Stone). A T1 space Y is paracompact if each open cov-
ering has an open barycentric refinement.

Proof. Let U = {Uα : α ∈ A } be an open covering of Y . We will show that
it has a refinement as required in Theorem ( 1.5.7) (B).

Let U∗ be an open star refinement of U (exists by Proposition ( 1.5.9)),
and let {Un : n ≥ 0} be a sequence of open coverings such that each Un+1

star refines Un when n ≥ 0, and U0 star refines U∗.
Define a new sequence of coverings:

B1 = U1

B2 = {St(V,U2) : V ∈ B1(= U1)}
...
Bn = {St(V,Un) : V ∈ Bn−1}
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...

Claim i): Each covering {St(V,Un) : V ∈ Bn} refines U0.
Proof: n = 1 By definition, since B1 = U1 and U1 star refines U0.

n > 1 Assume that the claim holds for n = k − 1. Let V ∈ Bk ⇒
V = St(V0,Uk) for some V0 ∈ Bk−1. Denote by {Vi : i ∈ I} the set of
neighborhoods Vi ∈ Uk such that Vi ∩ V0 6= ∅. Then

St(V,Uk) = St[St(V0,Uk),Uk]

= (
⋃

j∈J

Vj) where j ∈ J ⇔ Vj ∈ Uk and Vj ∩ Vi 6= ∅ for some i ∈ I.

If Vj ∩ Vi 6= ∅ for some i ∈ I then , because Uk star refines Uk−1, there
exists V ′ ∈ Uk−1 such that

Vj ∪ Vi ⊂ St(Vi,Uk) ⊂ V ′

and since Vi ∩ V0 6= ∅ then

V0 ∩ V ′ ⊃ V0 ∩ (Vj ∪ Vi) = (V0 ∩ Vj) ∪ (V0 ∩ Vi) 6= ∅,

hence V ′ ⊂ St(V0,Uk−1), and so Vj ⊂ V ′ ⊂ St(V0,Uk−1).
Thus we have shown that St(V,Uk) = St[St(V0,Uk),Uk] ⊂ St(V0,Uk−1).

From the induction assumption it then follows that St(V,Uk) ⊂ St(V0,Uk−1) ⊂
U for some U ∈ U0, and so {St(V,Un) : V ∈ Bn} refines U0. �

Claim ii): Each Bn is an open refinement of U0.
Proof: Since the Ui are open coverings, the Bn are trivially open coverings.

n = 1 By definition B1 = U1 star refines U0, so B1 is an open refinement
of U0.

n > 1 Assume that Bn−1 is an open refinement of U0 and that V ∈ Bn−1.
Then

St(V,Un) =
⋃

i∈I

Ui

where i ∈ I ⇔ Ui ∈ Un and , Ui ∩ V 6= ∅. Since Un refines Un−1 then each
Ui ⊂ Vi ∈ Un−1 and St(V,Un) ⊂ St(V,Un−1), and by the previous claim,
St(V,Un−1) ⊂ U for some U ∈ U0 and so Bn = {St(V,Un) : V ∈ Bn−1}
refines U0. �
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Now well-order Y and for each (n, y) ∈ N × Y define

En(y) = St(y, Bn) −
⋃

z<y

{St(z,Bn+1)}.

Claim iii): F = {En(y) : (n, y) ∈ Z+ × Y } is a covering of Y , and F

refines U∗.
Proof: Given p ∈ Y , the set

A = {z ∈ Y : p ∈
∞
⋃

i=1

St(z,Bi)}

is nonempty, since p ∈ A. If y is the first member of A, then p ∈ St(y, Bn)
for some n ∈ N and p /∈ St(z,Bn+1) for all z < y. Hence p ∈ En(y), and
thus F is a covering.

Furthermore, if V ∈ F then V = En(y) for some (n, y) ∈ N× Y and thus
V ⊂ St(y, Bn) ⊂ St(y, U0) since Bn refines U0 and St(y, U0) ⊂ St(U,U0) ⊂
W where y ∈ U ∈ U0 and W ∈ U∗, since U0 star refines U∗. Hence F refines
U∗. �

Claim iv): Each U ∈ Un+1 can meet at most one En(y).
Proof: IfU ∈ Un+1 is such that U ∩En(y) 6= ∅ then there exists a set V ∈ Bn

such that y ∈ V and U ∩ V 6= ∅, and therefore y ∈ V ∪ U ⊂ St(V,Un+1) ∈
Bn+1. It follows that U ⊂ St(V,Un+1) ⊂ St(y, Bn+1). Hence, if U meets
En(y) then it cannot meet En(p) for p > y. �

Denote Wn(y) = St(En(y),Un+2).

Claim v): W = {Wn(y) : (n, y) ∈ N × Y } is an open covering of Y.
Proof: Let p ∈ Y . Now by Claim iii) there exists (n, y) ∈ Z+ × Y such that
p ∈ En(y). Since Un+2 is a covering there exists a set U ∈ Un+2 such that
p ∈ U and hence U ∩ En(y) 6= ∅ which gives U ⊂ St(En(y),Un+2) and hence
p ∈ U ⊂ Wn(y). Moreover, W is open since Un+2 is open. �

Claim vi): W refines U.
Proof: If V ∈ W then V = St(En(y),Un+2) for some (n, y) ∈ Z+ × Y .
Since by Claim iii), F refines U∗ we have St(En(y),Un+2) ⊂ St(V,Un+2) for
some V ∈ U∗. Furthermore, since Un+2 refines U∗ we have St(V,Un+2) ⊂
St(V,U∗) ⊂ U for some U ∈ U since U∗ star refines U. �

Claim vii): The family Wn = {Wn(y) : y ∈ Y } is neighborhood-finite for
fixed n ∈ N.
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Proof: Let U ∈ Un+2. Since

U ∩ Wn(y) 6= ∅ ⇔ U ∩ St(En(y),Un+2) 6= ∅

⇔ ∃V ∈ Un+2s.t.V ∩ U 6= ∅ and V ∩ En(y) 6= ∅

⇔ En(y) ∩ St(U,Un+2) 6= ∅

and because St(U,Un+2) ⊂ U0 ∈ Un+1 where U0 meets at most one En(y),
it follows that U can meet at most one Wn(y). �

Hence, since W =
⋃

n∈N
Wn, we have proved that the covering W satisfies

the conditions in (B) in 1.5.7, and it remains to show that the space Y is
regular.

Claim viii): The space Y is regular.
Proof: Let B be a closed subset of Y and let y ∈ Y − B. Since Y is T1,
{y} is closed in Y . Hence U = {Y − y,Bc} is an open covering of Y . Let B

be an open star refinement of U. Then St(y, B) and St(B,B) are disjoint
neighborhoods of y and B:

Assume that there are neighborhoods V and V ′ in B such that y ∈ V ,
B ∩ V ′ 6= ∅ and V ∩ V ′ 6= ∅. Then y ∈ St(V,B) and V ′ ⊂ St(V,B) and thus
St(V,B) " Y − y and St(V,B) " Bc; hence B is not a star refinement of U,
which is a contradiction.

Hence Y is regular, and it follows from 1.5.7 (B) that Y is paracompact.

Definition 1.5.11 (Locally starring sequence). Let U = {Uα : α ∈ A }
be an open covering of Y . A sequence {Un : n ∈ N} of open coverings is
called locally starring for U if for each y ∈ Y there exists a neighborhood V
of y and an n ∈ N such that St(V,Un) ⊂ Uα for some α ∈ A .

Theorem 1.5.12 (Arhangel’skii). A T1 space is paracompact if for each
open covering U there exists a sequence {Un : n ∈ N} of open coverings that
is locally starring for U.

Proof. Let U = {Uα : α ∈ A } be a covering of Y and {Un : n ∈ N} a
sequence of open coverings that is locally starring for U. We can assume that
Un+1 refines Un for all n ∈ N. (If not, replace Un+1 with {Uj ∩ Ui : Ui ∈
Un, Uj ∈ Un+1}.) Let

B = {V open in Y |∃ n : [V ⊂ U ∈ Un] ∧ [St(V,Un) ⊂ Uα for some α ∈ A ]}.
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For each V ∈ B, let n(V ) be the smallest integer satisfying the condition.

Claim: B is an open covering of Y .
Proof: B consists of open sets by definition. If y ∈ Y then since {Un}
is locally starring for U there exists a neighborhood V (y) of y such that
St(V (y),Un) ⊂ Uα for some n ∈ N, α ∈ A . Since Un is a covering of Y
there exists a set U ∈ Un such that y ∈ U . Let W = V (y) ∩ U 6= ∅. Then
St(W, Un) ⊂ St(V (y),Un) ⊂ Uα where α ∈ A and W ⊂ U ∈ Un. The set W
is open as the intersection of two open sets; hence y ∈ W ∈ B, and hence B

is a covering of Y . �

Claim: The covering B is a barycentric refinement of U.
Proof: For some y ∈ Y , let n(y) = min{n(V ) : (y ∈ V ) ∧ (V ∈ B)}, and let
V0 ∈ B be such that y ∈ V0 and n(V0) = n(y). For any V ∈ B where y ∈ V
we have n(V ) ≥ n(y), so

St(y, B) ⊂
⋃

{St(y, Ui) : i ≥ n(y)}.

Since Ui+1 refines Ui it follows that St(y, B) ⊂ St(y, Un(y)) = St(y, Un(V0)) ⊂
Uα for some α ∈ A . Hence B is a barycentric refinement for U �.

It follows from Theorem ( 1.5.10) that Y is paracompact.

Theorem 1.5.13 (Stone). A metrizable space is paracompact.

Proof. We will prove the theorem by finding a sequence of open coverings
which is locally starring for all open coverings of the metrizable space X, and
using 1.5.12.

Let d be a metric for the space X and denote

Bn = {B(x,
1

n
) : x ∈ X} ∀ n ∈ N.

Given an open covering {Uα : α ∈ A } and a point x ∈ X, choose an
n ∈ N such that d(x, U c

α) ≥ 1
n

> 0. By letting V (x) = B(x, 1
3n

), then
St(V (x),B3n) ⊂ Uα. (If y ∈ St(V (x),B3n) and z ∈ V (x) then d(z, y) < 2

3n

and so

d(x, y) ≤ d(x, z) + d(z, y) <
1

3n
+

2

3n
=

1

n
≤ d(x, U c

α)

and hence y ∈ Uα.)
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Thus {Bn} is locally starring for any open covering of X. By Theorem
( 1.5.12), X is paracompact.

1.6 Properties of normal and fully normal spaces

Reference: [1], [2], [6]
This section contains some useful properties of normal spaces plus the

definition of and some lemmas concerning fully normal spaces, which will
come in handy later.

A covering {Vλ : λ ∈ Λ} is point-finite if for each point y ∈ Y there
are at most finitely many indices λ ∈ Λ such that y ∈ Vλ. An interesting
result is that normal spaces are characterized by the ”shrinkability” of open
point-finite coverings:

Lemma 1.6.1. Let X be a T1 topological space. Then the following properties
are equivalent:

a) X is normal.

b) Let α = {Vλ : λ ∈ Λ} be a point-finite covering of a normal space X,
then α has an open refinement β = {Uλ : λ ∈ Λ} such that Uλ ⊂ Vλ

for each λ ∈ Λ, and Uλ 6= ∅ whenever Vλ 6= ∅.

Proof. ”(a) ⇒ (b)”
Well-order the indexing set Λ and for each x ∈ X, denote

h(x) = max{λ : x ∈ Vλ}.

Now, h(x) is well defined since x is only contained in finitely many Vλ.

Well-order P(X) - we will define a map φ : Λ → P(X) by transfinite
construction such that Uλ = φ(λ) is an open set for all λ and

i) Uλ ⊂ Vλ, Uλ 6= ∅ whenever Vλ 6= ∅.

ii) {Uα : α ≤ λ} ∪ {Vβ : β > λ} is a covering of X for all λ ∈ Λ.

Assume that φ(α) is defined for all α < λ, and note that then

{Uα : α < λ} ∪ {Vβ : β ≥ λ}
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is a covering of X.
It follows that

F = X \ [
⋃

α<λ

Uα ∪
⋃

β>λ

Vβ] ⊂ Vλ

and, since F is the complement of an open set it is closed and hence by
the normality of X there is an open set U such that F ⊂ U ⊂ U ⊂ Vλ (If
F = ∅ then replace F with a point in Uλ). Let φ(λ) = Uλ be the first such
set in the well-ordering of P(X). Then, clearly, the conditions i) and ii) are
satisfied by the new family.

Hence we have a uniquely defined family of sets Uλ such that Uλ ⊂
Vλ ∀ λ ∈ Λ. It remains to show that {Uλ : λ ∈ Λ} is a covering of X.

Assume that x ∈ X is an arbitrary point; then x /∈
⋃

β>h(x) Vβ and hence

by the condition ii) x ∈ Uα for some α ≤ h(x).

”(b) ⇒ (a)”
Let A and B be disjoint closed sets in X. Then {Ac, Bc} is a point-finite
covering of X, and so there is an open refinement {U1, U2} such that U1 ⊂ Ac

and U2 ⊂ Bc. Then U
c

1 is a neighborhood of A, U
c

2 is a neighborhood of B,
and

U
c

1 ∩ U
c

2 = (U1 ∪ U2)
c = Xc = ∅

and hence X is normal.

Definition 1.6.2 (Fully normal space). A Hausdorff space X is fully nor-
mal if every open covering has an open barycentric refinement (see Definition
( 1.5.8)).

Proposition 1.6.3. A fully normal space is normal.

Proof. Let A and B be disjoint closed subsets of X - now {Ac, Bc} is an open
covering of X.

Let U = {Uj : j ∈ J} be an open barycentric refinement of {Ac, Bc}.
Define

VA =
⋃

{Uj : j ∈ J and A ∩ Uj 6= ∅}

VB =
⋃

{Uj : j ∈ J and B ∩ Uj 6= ∅},

now VA and VB are open neighborhoods of A and B, and we will see that
they are disjoint:

14



Suppose that x ∈ UjA
∩ UjB

, where UjA
∩ A 6= ∅ and UjB

∩ B 6= ∅. Then
St(x,U) * Ac and St(x,U) * Bc and so U is not a barycentric refinement,
and we have a contradiction.

Theorem 1.6.4. A metrizable space is fully normal.

Proof. Let X be a metrizable space, and let U = {Ui : i ∈ I} be an open
covering of X. Since X is metrizable it is paracompact, and hence U has
a neighborhood-finite open refinement V = {Vj : j ∈ J}. A neighborhood-
finite covering is certainly point-finite, and so by Lemma ( 1.6.1), since a
metrizable space is normal, V has an open refinement W = {Wj : j ∈ J}
such that W j ⊂ Vj for all j ∈ J .

Now each x ∈ X has a neighborhood Ux which intersects only finitely
many Vj. Denote by J(x) the set of indices j ∈ J such that x ∈ W j and
let K(x) be the set of indices k ∈ J for which Ux intersects Vk but x /∈ W k.
Then both J(x) and K(x) are finite.

Denote

Bx = Ux ∩
⋂

j∈J(x)

Vj ∩
⋂

k∈K(x)

W
c

k.

B = {Bx : x ∈ X} is an open cover of X since the Bx are finite intersec-
tions of open sets containing x, and it is actually a barycentric refinement of
U:

Let x ∈ X; now there is a Wj which contains x, since W is a covering of
X. If x ∈ By then W j intersects By and so j /∈ K(y) by the definition of
By. Since x ∈ By ∩ Wj we have Uy ∩ Vj 6= ∅ and so j ∈ J(y) since j /∈ K(y)
and so By ⊂ Vj. Hence St(x,B) ⊂ Vj ⊂ Ui for some i ∈ I and so B is a
barycentric refinement of U.
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Chapter 2

Retracts

2.1 Extensors and Retracts

This section contains the basic definitions and properties of the spaces called
absolute extensors/retracts (AE/AR) and absolute neighborhood extensors/retracts
(ANE/ANR). In a later chapter we will see that in metrizable spaces the con-
cepts of AE and AR (or ANE and ANR) are essentially the same.

Definition 2.1.1 (Weakly hereditary topological class of spaces). A
weakly hereditary topological class of spaces (WHT) is a class C of spaces
satisfying the following conditions:

(WHT 1) C is topological: If C contains a space X then it contains
every homeomorphic image of X.

(WHT 2) C is weakly hereditary: If C contains a space X then it con-
tains every closed subspace of X.

Example 2.1.2. The following classes of spaces are WHTs:
H = class of all Hausdorff spaces
M= class of all metrizable spaces
K = class of all compact spaces
N =class of all normal spaces

Definition 2.1.3 (AE and ANE). A closed subspace A in a topological
space X has the extension property in X with respect to a space Y if and
only if every map f : A → Y can be extended over X.

A closed subspace A of a topological space X has the neighborhood ex-
tension property in X with respect to Y if and only if every map f : A → Y
can be extended over some open subspace U ⊂ X. (U may depend on f).

Let C be a WHT.
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An absolute extensor (AE) for C is a space Y such that every closed
subspace A of any space X in C has the extension property in X with respect
to Y .

An absolute neighborhood extensor (ANE) for C is a space Y such that
every closed subspace A of any space X in C has the neighborhood extension
property in X with respect to Y .

Definition 2.1.4 (AR and ANR). Let C be a WHT.
A retract of a topological space X is a space A ⊂ X such that the identity

map Id : A → A has a continuous extension f : X → A.
A neighborhood retract of a topological space X is a space A ⊂ X such

that A is a retract of an open subspace U ⊂ X.
An absolute retract (AR) for the class C is a space Y ∈ C such that

every homeomorphic image of Y as a closed subspace of a space Z ∈ C is a
retract of Z.

An absolute neighborhood retract (ANR) for the class C is a space Y ∈ C

such that every homeomorphic image of Y as a closed subspace of a space
Z ∈ C is a neighborhood retract of Z.

The following proposition trivially holds:

Proposition 2.1.5. Every AR for a WHT C is an ANR for C .
Let D be a WHT contained in C and let Y be a space in D . If Y is an
ANR/AR for C then Y is an ANR/AR for D .
If Y = {p} is a singleton then Y is an AR for every class C which contains
a singleton space (and hence also contains Y ). �

Another well-known result is Tietze’s extension theorem:

Theorem 2.1.6 (Tietze’s extension theorem). The interval I = [0, 1] is
an AE for the class N of all normal spaces. �

The following is also a useful result:

Proposition 2.1.7. Any topological product of AEs for a class C is also an
AE for C .

Proof. Let {Yi : i ∈ I} denote a family of AE’s for the class C , and let Y
denote the topological product of the Yi. Assume that X is an element of the
class C , that A is a closed subspace of X and that f : A → Y is a mapping.
For all i ∈ I define the canonical projection pi : Y → Yi and consider the
composition

pi ◦ f : A → Yi.
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Since Yi is an AE for C there is an extension gi : X → Yi. We may define
a mapping g : X → Y by setting

pi(g(x)) = gi(x) ∀x ∈ X

It follows that g|A = f and so Y is an AE for C .

We may generalize Tietze’s extension theorem using the proposition above:

Corollary 2.1.8. Any topological power of the unit interval I, such as In or
the Hilbert cube, is an AE for the class N of normal spaces. �

The following will also prove useful:

Corollary 2.1.9. The n-cell B
n
, the standard n-simplex ∆n and any closed

n-simplex σ of any polytope is an AE for N .

Proof. All of the spaces mentioned above are homeomorphic to In.

2.2 Polytopes

References: [5], [8]
Polytopes are a certain kind of spaces which have nice topological prop-

erties and which will be used extensively when dealing with coverings for
instance when proving results about retracts. This section contains the basic
definitions and properties of polytopes.

Definition 2.2.1 (Simplicial complex). An abstract simplicial complex
K is a pair (V , Σ), where V is a set of elements called vertices and Σ is a
collection of finite subsets of V called simplexes with the property that each
element of V lies in some element of Σ and, if σ ∈ Σ then for every subset
σ′ ⊂ σ it is true that σ′ ∈ Σ. A simplex containing exactly the vertices
a0, a1, ...an is sometimes denoted {a0, a1, ..., an}.

An abstract simplicial complex is infinite if the set V is infinite. If it is
not infinite, it is finite. The dimension of a simplex σ is defined by

dim(σ) = (number of vertices in σ) − 1,

and the dimension of an abstract simplicial complex K is

dim(K) = sup{dim(σ) : σ ∈ Σ}.

If L is a simplicial complex such that each vertex of L is also a vertex of
K, and each simplex of L is also a simplex of K, then L is a subcomplex of
K.
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For most purposes we will in fact denote by K also the sets of vertices of
K and the set of simplexes of K, so that in the definition of the simplicial
polytope |K| associated to K below, the domain of the map α : K → I actually
the set V of vertices of K. Similarly, a vertex v of K is often denoted as a
vertex v ∈ K and a simplex σ of K is often denoted as a simplex σ ∈ K.

Example 2.2.2. If σ is a simplex, then the set σ̇ of all proper subsimplices
of σ is a simplicial complex.

Remark 2.2.3. Note that a simplicial complex of dimension ∞ is infinite,
while an infinite complex may have finite dimension. For example, the sim-
plicial complex (Z, {{n} : n ∈ Z}), where the only simplices are the vertices
themselves, is an infinite complex of dimension 0.

Example 2.2.4 (The nerve of a covering). Let X be a topological space
and let U = {Uα 6= ∅ : α ∈ A } be a covering of X. Now let each α ∈ A

be a vertex in a simplicial complex denoted N which is constructed in the
following way:
{α0, α1, ...αn} is a simplex of N if and only if Uα0

∩ Uα1
∩ ... ∩ Uαn

6= ∅.
It is clear from the definitions that N is a simplicial complex, and it is

called the nerve of the covering U.

If we let K be any nonempty simplicial complex, we may define a new
set |K| which is the set of all functions

α : K → I

such that

(a) For any α ∈ |K|, {v ∈ K : α(v) 6= 0} is a simplex of K - in particular,
α(v) 6= 0 for only finitely many v ∈ K.

(b) For any α ∈ |K|,
∑

v∈K α(v) = 1.

The set |K| is called the simplicial polytope associated with the simplicial
complex K, and if L is a subcomplex of K, then |L| is a subpolytope of |K|.

The polytope associated with the nerve of a covering is called the geo-
metric nerve of the covering.

In order to define a topology on a given polytope we need the notion of
a geometric simplex.
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Definition 2.2.5 (Geometric simplex, the standard n-simplex in
Rn+1.). Let A = {a0, a1, ...ak} be a set of geometrically independent points
in Rn, i.e. no (k − 1)-dimensional hyperplane contains all the points. The
geometric k-simplex in Rn (denoted σk) spanned by A is the convex hull

{
k
∑

i=0

λiai where each λi ∈ R+ and
k
∑

i=0

λi = 1}.

of the set A, and the points of A are the vertices of σk. The simplex is
also denoted σk = (a0, a1, ...ak). The set of all points x ∈ σk for which each
λi > 0 is the open geometric k-simplex spanned by A. A simplex σm is a face
or a subsimplex of the simplex σk if all the vertices of σm are also vertices
of σk.

The standard n-simplex in Rn+1, denoted ∆n, is the geometric simplex
spanned by the standard vectors ei = (0, ..., 0, 1, 0, ..., 0) ∈ Rn+1 with the 1 in
the ith place, i = 0, 1, ..., n.

If σ is a simplex in a simplicial complex K, then the corresponding closed
simplex |σ| is a subset of |K| defined by

|σ| = {α ∈ |K| : α(v) 6= 0 ⇒ v ∈ σ}.

Proposition 2.2.6. For every q-simplex σ in a simplicial complex K, the
corresponding closed simplex |σ| is in 1− 1 correspondence with the standard
q-simplex ∆q in Rq+1.

Proof. Let v0, ..., vq be the vertices of σ and let r0, ..., rq denote the vertices
(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1) of ∆q. Define a function f : ∆q →
|σ| by

f :

q
∑

i=0

tiri 7→ α where α(vi) = ti ∀ i = 0, 1, ..., q.

The points ti = α(vi) are called the barycentric coordinates of the point
α in |σ|. Next define a function g : |σ| → ∆q by

g : α 7→

q
∑

i=0

α(vi)ri ∀ α ∈ |σ|.

It is clear that f ◦ g = id|σ| and g ◦ f = id∆q
and hence f is a bijection.
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Now that we have a bijection f between each closed simplex |σ| and the
standard n-simplex ∆n in Rn+1 for some n ∈ N0, we may define a topology
on |σ|. Assume that ∆n has the Euclidean topology for all n ∈ N (induced
from the usual topology on Rn+1 as a subset). Then let a subset U be open
in the closed q-simplex |σ| if and only if f(U) is open in ∆q - that is, we let
|σ| have the only topology which makes f a homeomorphism.

We then say that |σ| has the Euclidean topology.

Next we wish to define a topology on the polytope |K| associated with a
simplicial complex K, and we will require the topology to satisfy two condi-
tions:

(PT1) Every subpolytope of |K| is a closed subset of |K|.
(PT2) Every finite subpolytope |L| of |K|, considered as a subspace of

|K|, has the Euclidean topology, or in other words, its topology equals the
subset topology when |L| is considered to be a subset of the closed simplex
|σ|, where σ is a simplex whose vertices are all the vertices of L (That is, σ
is not necessarily a simplex of K.)

One topology which fulfills these requirements is the Whitehead topology
Tw (usually referred to as the weak topology), which is defined as follows:

A set U ⊂ |K| is open (or closed) if and only if, for every closed simplex
|σ| of |K|, the intersection U ∩ |σ| is an open (or closed) subset of |σ|. This
is then the topology coinduced by the inclusion maps iσ : |σ| → |K| for each
simplex σ of K.

Always when talking about simplicial polytopes, it will be understood
that it has the Whitehead topology unless otherwise is stated.

Proposition 2.2.7. A subpolytope |L| of a simplicial polytope |K| is a closed
subset of |K|. In particular, a closed simplex |σ| is a closed subset of |K|.

Proof. Let σ be a simplex in K; now, for each simplex σ′ in L the intersection
σ′ ∩ σ is either empty or a subsimplex of σ. Since σ contains only finitely
many subsimplices, the set

{σ′ ∩ σ : σ′ is a simplex in L, σ′ ∩ σ 6= ∅} = {σi : i ∈ I}

is a finite set of simplices.
Hence |σ| ∩ |L| =

⋃

i∈I |σi| where I is a finite index set.

Now, if ∆n is the standard n-simplex homeomorphic to |σ| then each |σi|
is homeomorphic to some subsimplex of ∆n, which is a closed subset, and
hence |σi| is a closed subset of |σ|. Hence, as a finite union of closed subsets,
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|σ| ∩ |L| is a closed subset of |σ|.

Hence |L| is closed in |K|.

It follows that Tw fulfills the condition (PT1).

Proposition 2.2.8. Let |K| be any simplicial polytope, and let |L| be a finite
subpolytope of |K|. Then |L| has the Euclidean topology.

Proof. Denote by v0, v1, ..., vn the vertices of L and denote by σ the simplex
spanned by the vi (not necessary a simplex of K). Now σ is homeomorphic
to the standard n-simplex ∆n in Rn+1. The topology on each simplex σ ∈ |L|
is then the relative topology from Rn+1.

Now if U ⊂ |L| is open in the ”relative” topology on |L| from Rn+1, then
it is clear that U is open in |L| with the Whitehead topology. Conversely, if
U ⊂ |L| is open in |L| with the Whitehead topology then U ∩ |σ| is open in
|σ| for each closed simplex |σ| ∈ |L|. Then |L| \ U =

⋃n

i=1 |σi| \ U which is
closed in the relative topology since |σi| \U is closed in the relative topology
for each i ∈ {1, ..., n} where the σi are the simplices of L. Hence U is open
in |L| with the relative topology, and hence the relative topology from σ, or
in other words, the Euclidean topology on |L|, and the Whitehead topology
on |L| are the same.

Now we have shown that Tw fulfills (PT2) as well.

Proposition 2.2.9. Let the simplicial polytope |K| have the Whitehead topol-
ogy, and let X be a topological space. A function

f : |K| → X

is continuous if and only if f ||σ| : |σ| → X is continuous for for every
σ ∈ K.

Proof. ”⇒” Trivial, since the restriction of a continuous map is always con-
tinuous.

”⇐” Let U be an open subset of X. Now

f−1(U) ∩ |σ| = (f ||σ|)
−1(U)

is open in |σ| for every σ ∈ K, and hence f is continuous.
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Definition 2.2.10 (The metric topology). Another topology which also
satisfies (PT 1-2) is the metric topology Td. We may define a metric d on
|K| by setting

d(α, β) =

√

∑

v∈V

[α(v) − β(v)]2.

The polytope associated to K with the metric topology will from now on be
denoted |K|d, while |K| is used for the polytope with the Whitehead topology.

Clearly, the topology of a closed simplex as a subset of a simplicial poly-
tope induced by the metric topology is the Euclidean topology. Hence, if a
subset A of a simplicial polytope |K| is open in the metric topology, then
A∩ |σ| is open in |σ| for every closed simplex |σ| in |K| and hence A is open
also in the Whitehead topology. It follows that Td ⊂ Tw.

The following proposition is then obvious:

Proposition 2.2.11. The identity map

id : |K| → |K|d

is continuous.

Corollary 2.2.12. A simplicial polytope |K| with the Whitehead topology is
a Hausdorff space.

Proof. The metric space |K|d is Hausdorff, and the identity map Id : |K| →
|K|d is continuous - hence since two points a 6= b have two disjoint open
neighborhoods in the metric topology, the same two disjoint sets are also
neighborhoods in the Whitehead topology.

We have shown that Td ⊂ Tw, but the opposite is not generally true -
consider for instance the simplicial complex K = (N0, Σ) where Σ = {{n} :
n ∈ N0} ∪ {{0, n} : n ∈ N}. Now if σn is the closed simplex of the polytope
|K| corresponding to the abstract simplex {0, n} then σn is homeomorphic
to [0, 1] by the homeomorphism that takes each point to its barycentric co-
ordinate with respect to the vertex n. We may call this homeomorphism hn.
Now, if we denote

A =
⋃

n∈N

h−1

(

[0,
1

n
)

)

then A is open in the Whitehead topology since A ∩ σn = h−1
n

(

[0, 1
n
)
)

is
open in σn and A ∩ {n} is either empty or {n} (and hence open in {n}) for
each 0-simplex {n} of |K|.
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Figure 2.1: The set underlying the polytope |K| may be visualized like this.

Figure 2.2: The subset A of |K| then corresponds to a set which one may
visualize like this.

However, A will not be open in the metric topology Td on |K| since for
each r > 0

Bd(0, r) =
⋃

n∈N

h−1
n ([0, r))

will contain points from |K| \ A. It follows that Tw * Td.

Proposition 2.2.13. For a simplicial complex K, the polytope |K| is normal.

Proof. Claim: |K| is normal ⇔ if A is a closed subset of |K| then any map
f : A → I can be continuously extended over |K|.

”⇒”
By Tietze’s extension theorem.

”⇐”
Let A and B be two disjoint closed subsets of |K|. Define a function

f : A ∪ B → I by setting

f(x) =

{

0 x ∈ A
1 x ∈ B

Now f is continuous, and so by the assumption it has a continuous ex-
tension g : |K| → I. Define
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V = g−1([0,
1

2
[),

U = g−1(]
1

2
, 1]);

then V and U are disjoint neighborhoods of A and B, respectively. Hence
|K| is normal, and the claim holds. �

To show that |K| really is normal we then show the right hand side of
the equivalence above. Let A be any closed subset of the simplicial polytope
|K|, and let f : A → I be any continuous map. By Proposition ( 2.2.9) a
continuous extension over |K| exists if and only if there exists a family of
maps {fσ : |σ| → I : σ is a simplex in K} such that

(a) if σ′ is a face of σ, then fσ|σ
′ = fσ′

(b) fσ|(A ∩ |σ|) = f |(A ∩ |σ|).

We will use induction on the dimension of σ to prove that such a family
exists.

If dim(σ) = 0 then |σ| is a singleton set, and so

- if |σ| ⊂ A then define fσ = f | |σ|

- if |σ| * A then fσ may take any value.

Let q > 0 and assume that fσ is defined for all simplexes σ of dimension
less than q, such that (a) and (b) hold. Let σ be a q-simplex, and define a
function f ′

σ : |σ̇| ∪ (A ∩ |σ|) → I by setting

f ′
σ||σ′| = fσ′ if σ′ is a proper face of σ

f ′
σ|(A ∩ |σ|) = f |(A ∩ |σ|)

where σ̇ is the simplicial complex consisting of all proper faces of σ. Now
{fσ′ : dim σ′ < q} is a family of maps satisfying both conditions (a) and (b),
and hence f ′

σ is a continuous map

|σ̇| ∪ (A ∩ |σ|) → I,

where |σ̇|∪(A∩|σ|) is a closed subset of |σ|. Since |σ| is homeomorphic to
some standard n-simplex ∆n which is, as a closed subset of the normal space
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Rn, normal, it follows that |σ| is also normal and so by Tietze’s extension
theorem, there exists a continuous extension

fσ : |σ| → I

of f ′
σ.

Thus fσ satisfies the conditions (a)-(b) and so the theorem is proved.

Definition 2.2.14 (Open simplex). Given a simplex σ in a simplicial
complex K, the open simplex 〈σ〉 in |K| associated with σ is the set

〈σ〉 = {α ∈ |K| : α(v) 6= 0 ⇔ v ∈ σ}.

As noted in Proposition ( 2.2.6) and the following discussion, for each
closed simplex |σ| in |K| there is a homeomorphism

f : ∆n → |σ| for some n ∈ N.

Then, clearly, 〈σ〉 = f(Int(∆n)).

An open simplex does not have to be open in |K| - for instance, if K has
three vertices and it contains all possible simplexes then |K| is homeomorphic
to ∆2 and if σ is a simplex containing two vertices then 〈σ〉 is homeomorphic
to one of the sides of ∆2 minus the vertices - which is clearly not open in ∆2

and hence 〈σ〉 is clearly not open in |K|.
However, since 〈σ〉 = |σ| \ |σ̇|, the open simplex 〈σ〉 is open in |σ|.

Each point α ∈ |K| belongs to a unique open simplex - 〈s〉, where s =
{v ∈ K : α(v) 6= 0}. Thus the open simplexes form a partition of |K|.

Proposition 2.2.15. Let A ⊂ |K|. Then A contains a discrete subset which
consists of exactly one point from each open simplex which meets A.

Proof. For each simplex σ ∈ K such that A ∩ 〈σ〉 6= ∅ let ασ ∈ A ∩ 〈σ〉 and
let

A′ = {ασ : A ∩ 〈σ〉 6= ∅}

Since any simplex contains only a finite amount of subsimplexes, a closed
simplex can only contain a finite subset of A′ - thus every subset of A′ is
closed in the Whitehead topology and so A′ is discrete.
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Corollary 2.2.16. Every compact subset of |K| is contained in the union of
a finite number of simplexes.

Proof. Let C be a compact subset of |K| which is not contained in any finite
union of simplexes. Then C meets infinitely many open simplexes. Then by
Proposition ( 2.2.15) it contains an infinite discrete subset A′ which, since it
is closed, is compact also. Let A = {Va : a ∈ A′} be a set of open sets such
that Va ∩A′ = {a} ∀ a ∈ A′. Now A is an open covering of A′ which has
no finite subcovering - which gives a contradiction.

Corollary 2.2.17. A simplicial complex K is finite if and only if the set |K|
is compact.

Proof. ”⇒”
Each closed simplex is homeomorphic to some standard n-simplex ∆n which
is compact, hence every simplex is compact. The set |K| is then compact
since it is the finite union of compact sets.

”⇐”
Cor ( 2.2.16)

Definition 2.2.18 (The open star of a vertex). The open star St(v) of
a vertex v in a simplicial polytope |K| is defined as

St(v) = {α ∈ |K| : α(v) 6= 0}

The mapping

g : |K|d → I given by α 7→ α(v)

is continuous, and hence St(v) is an open subset of |K|d and hence also
of |K|. It follows that

α ∈ St(v) ⇔ α(v) 6= 0 ⇔ α ∈ 〈σ〉 where v ∈ σ

and thus

St(v) =
⋃

{〈σ〉 : v is a vertex of σ}

Conversely, the closed star St(v) of a vertex v is the union of all closed
simplexes which have v as a vertex.

Remark 2.2.19. From here on, the polytope associated with a simplicial
complex K will be denoted K also, when there is no danger of confusion.
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2.3 Dugundji’s extension theorem

In this section we will prove a theorem by Dugundji on the extension property
of mappings f : A → L to the space X ⊃ A where X is metrizable, A is a
closed subset of X and L is a locally convex topological linear space. When
dealing with metrizable spaces, this is more general and hence more useful
than the well-known Tietze’s extension theorem.

Definition 2.3.1 (Canonical covering). Let X be a topological space, and
let A be a closed subspace of X. A covering of X\A by a collection γ of open
sets of X\A is called a canonical covering of X\A if and only if the following
conditions hold:

(CC1) γ is neighborhood-finite (see Definition ( 1.4.3))
(CC2) Every neighborhood of any boundary point of A in X contains

infinitely many elements of γ.
(CC3) For each neighborhood V of a point a ∈ A in X there exists a

neighborhood W of a in X, W ⊂ V such that every open set U ∈ γ which
meets W is contained in V .

Example 2.3.2. Let X = B(0, 1) have the Euclidean topology and let A =
{0}. Denote by Un the set {z ∈ X : 1

n+2
< d(0, z) < 1

n
}. Now γ = {Un : n ∈

N} is a covering of X \ A and since each Un only intersects two others, γ is
neighborhood-finite. The conditions (CC2) and (CC3) are trivially fulfilled.
Hence γ is a canonical covering of X \ A.

In the example above, X was a metric space. We will now see that for
any metric space such a covering can be found.

Lemma 2.3.3. If X is a metrizable space and A is a (proper) closed subspace
of X, then there exists a canonical covering of X \ A.

Proof. Let d be a metric defining the topology in X. For each x ∈ X\A let
Sx denote the open neighborhood of x in X defined by

Sx = BX(x,
1

2
d(x,A))

Hence {Sx : x ∈ X\A} is an open covering of X\A. By Thm ( 1.5.13),
since X\A is metrizable it is paracompact. Thus the open covering {Sx : x ∈
X\A} has a locally finite open refinement γ.

We now wish to show that γ satisfies (CC2) and (CC3).
Let V be any neighborhood of an arbitrary point a ∈ A in X. Then there

exists k ∈ R+ such that BX(a, 2k) ⊂ V .
Denote by W the neighborhood of a defined by
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W = BX(a,
1

2
k)

Now assume that U ∈ γ meets W at some point y ∈ X. Since γ is a
refinement of {Sx : x ∈ X\A} there must be a point x ∈ X\A such that
y ∈ U ⊂ Sx. Hence by the definition of Sx it follows that

d(a, x) ≤ d(a, y)+d(y, x) <
1

2
k+

1

2
d(x,A) ≤

1

2
k+

1

2
d(a, x) ⇒

1

2
d(a, x) <

1

2
k.

Hence d(a, x) < k.
Since for any z ∈ Sx

d(x, z) <
1

2
d(x,A) ≤

1

2
d(x, a)

we have

d(a, z) ≤ d(a, x) + d(x, z) < d(a, x) +
1

2
d(a, x) =

3

2
d(a, x) < 2k.

It follows that z ∈ V , hence U ⊂ Sx ⊂ V and so (CC3) holds.

Now assume that a ∈ ∂A. To prove that a neighborhood V of a contains
infinitely many open sets of γ, it is enough to show that V contains a set
U0 ∈ γ and a neighborhood V0 of a which does not meet U0. (Then this V0

contains a set U1 ∈ γ and a neighborhood V1 of a such that U1 ∩ V1 = ∅,
and by continuing this procedure we obtain a sequence {U0, U1, U2, ...} of sets
Ui ∈ γ where Ui ⊂ V ∀ i ∈ N.)

Let V be any neighborhood of a. Because a ∈ ∂A, V contains a point
y ∈ X \ A. Hence there exists U ∈ γ such that y ∈ U . Let k be such that
BX(a, 2k) ⊂ V . Now, by the same argument as above, there exists a point
x ∈ X \ A such that d(a, x) = k′ < k and U ⊂ Sx ⊂ V .

Now let V0 denote the neighborhood of a defined by

V0 = BX(a,
1

2
k′)

Then V0 ⊂ V and V0 ∩ U = ∅, since

u ∈ U ⊂ Sx ⇒ d(x, u) < 1
2
d(x,A) ≤ 1

2
d(x, a) = 1

2
k′

⇒ d(u, a) ≥ d(x, a) − d(x, u) > k′ − 1
2
k′ = 1

2
k′

⇒ u /∈ V0
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and so (CC2) holds.

Lemma 2.3.4 (Replacement by polytopes). If X is a metrizable space
and A is a closed proper subspace of X then there exists a space Y and a
map

µ : X → Y

with the following properties:

(RP1) The restriction µ|A is a homeomorphism of A onto a closed sub-
space µ(A) of Y .

(RP2) The open subspace Y \ µ(A) of Y is an infinite simplicial polytope
with the Whitehead topology, and

µ(X \ A) ⊂ Y \ µ(A)

(RP3) Every neighborhood of a boundary point of µ(A) in Y contains
infinitely many simplexes of the simplicial polytope Y \ µ(A).

Proof. Let γ be a canonical covering of X \ A and let N be the geometric
nerve of γ (We may assume that ∅ /∈ γ). Then the vertices of N are in
1-1 correspondence with the open sets in γ. Denote by vU the vertex of N
corresponding to U ∈ γ.

Let Y denote the disjoint union A∪̇N , and topologize Y as follows:
Let y ∈ Y be an arbitrary point. If y ∈ N , take as a basis for neighbor-

hoods of y in Y all of the neighborhoods of y in N . If y ∈ A, take as a basis
for neighborhoods or y in Y all of the sets V ∗ defined by: If V is an arbitrary
neighborhood of y in X, then V ∗ is a set in Y consisting of the points of
V ∩ A and the points of the open stars St(vU) in N , where U is an element
of γ contained in V .

Claim: The bases for neighborhoods described above define a topology on
Y .
Proof: Denote

B = {U, V ∗ : U is a neighborhood of y ∈ N in N, V is a neighborhood of y′ ∈ A in X}

We will show that B defines a basis for some topology on Y , and that in
this topology the original bases for neighborhoods really are bases for neigh-
borhoods.
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Clearly B covers Y . It now suffices to show that given B1, B2 ∈ B and
x ∈ B1 ∩ B2, there exists B ∈ B such that x ∈ B ⊂ B1 ∩ B2.

If B1 and B2 are both open neighborhoods in N of some point y ∈ N , then
B1∩B2 is also an open neighborhood of y in N and we may set B = B1∩B2.

If B1 and B2 can both be written

B1 = V ∗
1 , B2 = V ∗

2

where V1 and V2 are open subsets of X intersecting A, then

x ∈ V ∗
1 ∩ V ∗

2

means:

i) If x ∈ A: x ∈ (V1 ∩ A) ∩ (V2 ∩ A) = (V1 ∩ V2) ∩ A

ii) If x ∈ N : x ∈ St(vU1
)∩St(vU2

) where U1, U2 ∈ γ, U1 ⊂ V1, and U2 ⊂ V2.

In the case i), V1 ∩ V2 is a neighborhood of x in X. If y ∈ (V1 ∩ V2)
∗ ∩N

then y ∈ St(vU) where U ⊂ (V1 ∩ V2); hence U ⊂ V1 and U ⊂ V2, thus
St(vU) ⊂ V ∗

1 , and St(vU) ⊂ V ∗
2 , hence y ∈ St(vU) ⊂ V ∗

1 ∩ V ∗
2 . In other

words, we may set B = (V1 ∩ V2)
∗.

In the case ii), since open stars of vertices of N are open sets of N , we
may set B = St(vU1

) ∩ St(vU2
) ∈ B.

Finally, consider the case where B1 = U which is an open subset of N
and B2 = V ∗ for some open set V ⊂ X, and suppose that y ∈ U ∩ V ∗.

Now, since U ∩ V ∗ ⊂ N , we have y ∈ U ∩ St(vU ′) ⊂ U ∩ V ∗ for some
U ′ ∈ γ which is open in N . Thus we may choose B = U ∩ St(vU ′) ∈ B.

We have now shown that B is a basis for some topology on Y , and it is
easy to show that the initially defined bases of neighborhoods are bases of
neighborhoods in this topology. It follows that the topology whose basis is
B is the correct one. �

Claim: Y with this topology is a Hausdorff space, and both A and N
preserve their original topologies as subspaces of Y .

Proof: If a and y are two different points of Y so that they are both in N
then, since a simplicial polytope is Hausdorff, they have disjoint neighbor-
hoods V and U in N . Now these are also open in Y .

If a and y are both in A then, since X is metric, they have disjoint
neighborhoods Va and Vy in X. Since γ is a canonical covering, then by
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the condition (CC3) there exist neighborhoods Wa and Wy such that every
U ∈ γ which meets Wa is contained in Va, and every V ∈ γ which meets Wy

is contained in Vy. We will show that the neighborhoods W ∗
a and W ∗

y are
disjoint.

Clearly, (Wa∩A)∩(Wy∩A) = ∅. If Ua ∈ γ such that Ua ⊂ Wa, then each
V ∈ γ which meets Ua meets Wa and hence is contained in Va. Similarly if
we replace a with y. Hence if σa is a simplex in N with vUa

as a vertex, and
σy is a simplex in N with vUy

as a vertex, then σa and σy have no vertices
in common. Hence σa ∩ σy = ∅ and so St(vUa

) ∩ St(vUy
) = ∅. It follows that

W ∗
a and W ∗

y are disjoint neighborhoods of a and y in Y .

Finally assume that a ∈ A and y ∈ N . If a ∈ IntX(A) then V = IntX(A)
is a neighborhood of a which does not meet any elements of γ. Hence V ∗ = V .
It follows that if U is any neighborhood of y in N then V and U are disjoint
neighborhoods of a and y in Y .

Thus let a ∈ ∂XA. Let σ be the open simplex of N containing y. (by
a previous comment, the open simplexes of N constitute a partition of N),
and denote its vertices by v0, v1, ..., vn. They then correspond to open sets
U0, U1, ..., Un ∈ γ, where Ui ⊂ X \ A ∀ i = 0, 1, ..., n. Choose a neighbor-
hood V of a in X such that Ui * V ∀ i = 0, 1, ..., n. (Choose a point xi ∈
Ui ∀ i = 0, 1, ..., n and let V = BX(a, r) where r < d(a, xi) ∀ i = 0, 1, ..., n)

From the condition (CC3) in the definition of a canonical covering there
exists a neighborhood W of a such that each U ∈ γ which meets W is
contained in V . Then W cannot meet any of the sets Ui.

Now W ∗ is a neighborhood of a in Y . If U ⊂ W for some U ∈ γ then
the open star St(vU) consists of all open simplexes of N which have vU as a
vertex. Let σ′ be such a simplex of N . Then, if vU ′ is another vertex of σ′,
then

U ∩ U ′ 6= ∅ ⇒ W ∩ U ′ 6= ∅ ⇒ U ′ 6= Ui ∀ i = 0, 1, ..., n.

Hence none of the vi are vertices of σ′, and so σ∩σ′ = ∅. In other words,
since U was any element of γ contained in W and σ′ was any simplex of N
with vU as a vertex, we get that y /∈ W ∗. By the same argument as above, if
we let S denote the union of all closed stars St(vU), then also y /∈ S.

Any union S of closed stars of N is necessarily closed in N , since if s
is a simplex of N then S intersects s in a collection of closed subsimplexes
|s′| where s′ is a subsimplex of s, and any simplex s only has finitely many
subsimplexes. Hence S ∩ |s| is in reality a finite union of closed subsets of |s|
and is hence closed in |s|. Because this is true for any simplex s of N , S is
then a closed subset of N .
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By the argument above, S is a closed subset of N . Let W ′ = N \S. Now
W ′ is an open neighborhood of y in N and thus in Y , and W ′ ∩ W ∗ = ∅.

Conclusion: Y is Hausdorff! It is trivial that A and N preserve their
original topologies as subspaces of Y . Hence the claim has been proved. �

Since N =
⋃

y∈N Vy, where each Vy belongs to the basis for neighborhoods
of y, N is open in Y , and hence A is closed in Y .

Because γ is a neighborhood-finite covering of the metrizable space X \A,
we can define a canonical map

κ : X \ A → N

as follows:
Let d be a metric in X \ A which defines the topology of X \ A, and

let x ∈ X \ A be an arbitrary point. Since the covering γ is locally finite,
x is contained in only a finite number of open sets of γ - denote these sets
U0, U1, ...Un. Let ∆ denote the closed n-simplex in N corresponding to the
vertices vU0

, ...vUn
. Then we define κ(x) as the point in ∆ with barycentric

coordinates ξ0, ξ1, ...ξn given by

ξi =
d(x,X − Ui)

∑n

j=0 d(x,X − Uj)

(see the proof of Proposition ( 2.2.6) for the definition of barycentric co-
ordinates).

Now construct a function µ : X → Y by setting:

µ(x) =

{

x if x ∈ A
κ(x) if x ∈ X \ A

The function µ is continuous in X if it is continuous on the boundary of
A in X. In order to prove the continuity on ∂A, let a ∈ ∂A be arbitrary
and let V ∗ be a basic neighborhood of µ(a) in Y . Then V ∗ is, by definition,
determined by some neighborhood V of a in X, and by the condition (CC3)
for canonical coverings such as γ, there exists a neighborhood W ⊂ V of a
in X such that every U ∈ γ for which U ∩W 6= ∅ is contained in V . We will
show that µ(W ) ⊂ V ∗.

Let x ∈ W be an arbitrary point - we are about to show that µ(x) ∈ V ∗.
If x ∈ A, then

µ(x) = x ∈ A ∩ W ⊂ A ∩ V ⊂ V ∗
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If x ∈ X \ A, then µ(x) = κ(x) ∈ N . Since {St(vU) : U ∈ γ} covers N ,
there exists a set U ∈ γ which is such that κ(x) ∈ St(vU). But then κ(x) ∈
〈σ〉 where vU is a vertex of σ, and from that it follows that d(x,X \ U) > 0,
which gives x ∈ U . Hence U meets W at the point x, and thus U ⊂ V . It
follows from the definition of V ∗ that St(vU) ⊂ V ∗.

Hence, for any basic neighborhood V ∗ of µ(a) in Y there exists a neighbor-
hood W of a in X such that µ(W ) ⊂ V ∗, or, in other words µ is continuous
in ∂A and so it is continuous in X.

Now to the properties (RP1)-(RP3):
We have showed that N is open in Y , therefore A is closed and further-

more it keeps its original topology as a subspace of Y . Hence

µ|A = IdA : A → A

is a homeomorphism. Thus (RP1) holds.
By definition Y \µ(A) = Y \A = N is a simplicial polytope with White-

head topology. Furthermore, by the definition of a canonical covering γ, any
neighborhood of any boundary point of A in X contains infinitely many ele-
ments of γ, hence γ must have infinitely many elements and so N is infinite.
(RP2) holds.

Finally, each neighborhood V of a boundary point of A contains infinitely
many elements Ui of γ (CC2) and hence V ∗ contains all the 0-dimensional
simplexes {vUi

} which are infinitely many. Now (RP3) holds as well.

Definition 2.3.5 (Locally convex linear topological space). A linear
topological space is a real vector space L with a Hausdorff topology such
that vector addition x + y and scalar multiplication αx are continuous with
respect to the Hausdorff topology on L and the usual topology on R. L is
locally convex if for each a ∈ L and neighborhood U of a in L there exists a
convex neighborhood V of a in L such that a ∈ V ⊂ U .

Theorem 2.3.6 (Dugundji’s extension theorem). Let X be a metrizable
space, A a closed subspace of X, L a locally convex topological linear space. If
f : A → L is a mapping then there exists a continuous extension g : X → L
of f such that g(X) is contained in the convex hull of f(A) in L.

Proof. We will use the space Y = A ∪ N and the map µ : X → Y which
were constructed in Lemma ( 2.3.4). It will be enough to prove that the map
f : A → L has an extension F : Y → L such that F (Y ) is contained in the
convex hull of f(A) in L, since the composition g = F ◦ µ : X → L will then
be an extension of f for which g(X) is contained in the convex hull of f(A)
in L.
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Now let d be a metric which defines the topology in X, and let γ be the
same canonical covering of X \ A which was used to construct the space Y
and the map µ in Lemma ( 2.3.4).

Let N0 denote the set of all the vertices of N . We will define a map
Φ : A ∪ N0 → L in the following way:

In each open set U ∈ γ, select a point xU and then pick a point aU ∈ A
such that d(xU , aU) < 2d(xU , A). Define the map Φ by setting:

Φ(a) = f(a) if a ∈ A
Φ(vU) = f(aU) if vU ∈ N0

Claim: Φ is continuous
Proof: Because N0 is an isolated set, Φ|N0 is trivially continuous. So, it
suffices to check the continuity on ∂A (∂XA = ∂Y A = ∂A∪N0A) to show that
Φ is continuous on A ∪ N0.

Let a ∈ ∂XA be an arbitrary point, and let M be any neighborhood of
Φ(a) = f(a) in L. Because f is continuous, there exists a real number δ > 0
such that f(BA(a, δ)) ⊂ M . Denote V = BX(a, δ

3
), and let V ∗ be the basic

neighborhood of a = µ(a) in Y as defined in Lemma ( 2.3.4). If we can show
that

Φ[V ∗ ∩ (A ∪ N0)] ⊂ M

then the map Φ will be continuous in the point a, hence in ∂A and thus
in all of A ∪ N0, since V ∗ ∩ (A ∪ N0) is a neighborhood of a in A ∪ N0.

Let y be any point in V ∗ ∩ (A ∪ N0). If y ∈ A, then

y ∈ V ∗ ∩ A = V ∩ A

and thus d(a, y) < δ
3

< δ, which implies that Φ(y) = f(y) ∈ f(BA(a, δ)) ⊂
M .

If y ∈ N0, then y = vU for some U ∈ γ where U ⊂ V . This implies that
d(a, xU) < δ

3
and it follows that

d(a, aU) ≤ d(a, xU) + d(xU , aU) < d(a, xU) + 2d(xU , A) ≤ 3d(a, xU) < δ.

and thus Φ(vU) = f(aU) ∈ f(BA(a, δ)) ⊂ M .
Hence Φ is continuous. �

Extending Φ over Y : Since L is a linear space, we can extend linearly
over each simplex of N the map Φ which is given on the vertices, obtaining
a function F : Y → L. Since addition and scalar multiplication in L are
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continuous, F is continuous on each simplex of N . It follows from Proposition
( 2.2.9) that F is continuous in all of N . Hence, again it suffices to check the
continuity of F at the boundary points of A in Y .

Let a ∈ ∂A be an arbitrary point and let M be any neighborhood of the
point F (a) = f(a) in L. Because L is locally convex, M contains a convex
neighborhood K of f(a) in L, and since Φ is continuous there exists a basic
neighborhood V ∗ of a in Y such that Φ[V ∗ ∩ (A ∪ N0)] ⊂ K. Now, V ∗

is determined by a neighborhood V of a in X as in Lemma ( 2.3.4). By
(CC3) there exists a neighborhood W of a in X such that W ⊂ V and such
that each U ∈ γ which meets W is contained in V . This neighborhood W
determines another basic neighborhood W ∗ of a in Y , and we will show that
F is continuous by showing that F (W ∗) ⊂ K.

Let y ∈ W ∗. If y ∈ A, then

y ∈ W ∗ ∩ A = W ∩ A ⊂ V ∩ A = V ∗ ∩ A

and hence F (y) = Φ(y) ∈ K.
If y ∈ N then y is a point of some star St(vU) with U ⊂ W by the

definition of W ∗. Since the open simplexes of N constitute a partition of N ,
the point y is an interior point of some simplex ∆ of N , whose vertices can
be taken to be vU0

, ..., vUn
. Because y ∈ St(vU), U is one of the open sets

U0, ..., Un. By the definition of the nerve we must have that for each Ui, i =
0, 1, ..., n, Ui meets U and thus also W . Hence Ui ⊂ V for all i = 0, ..., n and
thus all the vertices vU0

, ..., vUn
are contained in V ∗ ∩N0. Hence Φ(vUi

) ∈ K
for all i = 0, ..., n and thus, since K is convex and F is linear on ∆ (as a
linear extension of Φ), it holds that F (∆) ⊂ K, and in particular, F (y) ∈ K.
Because y was arbitrarily chosen, F (W ∗) ⊂ K.

Now by definition, Φ(A ∪ N0) = f(A). Since F is obtained from Φ by
linear extension, where the coefficients are always ≥ 0 and adding up to 1, it
is clear that F (Y ) is contained in the convex hull of Φ(A ∪ N0) = f(A).

The proof is complete.

Corollary 2.3.7. Every convex set in a locally convex topological linear space
is an AE for the class M of metrizable spaces.

Proof. Let Y be a convex set in a locally convex topological linear space L;
let A be any closed subset of any metrizable space X and let f : A → Y be a
mapping. Then by the previous theorem there exists a continuous extension
g : X → L such that g(X) is contained in the convex hull of f(A) - which,
since Y is convex is contained in Y . Thus we have a continuous extension
g : X → Y , and so Y is an AE for M .
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2.4 The Eilenberg-Wojdyslawski theorem

In this section we prove the Eilenberg-Wojdyslawski theorem, which enables
us to use Dugundji’s extension theorem when dealing with ANRs. Reference:
[5]

Assume that Y is a metrizable space and that d is a bounded metric for Y .

Let L = C(Y ) = {f : Y → R : f is bounded and continuous}. Then,
clearly, L forms a vector space over R with addition

(f + g)(y) = f(y) + g(y)

(αf)(y) = α(f(y))

for all f, g ∈ L, α ∈ R and y ∈ Y .
We define a norm in L by setting

‖f‖ = sup
y∈Y

|f(y)|.

Then, clearly, if f, g ∈ L and α ∈ R,

‖f+g‖ = sup
y∈Y

|f(y)+g(y)| ≤ sup
y∈Y

(|f(y)|+|g(y)|) ≤ sup
y∈Y

|f(y)|+sup
y∈Y

|g(y)| = ‖f‖+‖g‖.

‖αf‖ = sup
y∈Y

|αf(y)| = |α| sup
y∈Y

|f(y)| = |α| ‖f‖.

‖f‖ = 0 ⇔ sup
y∈Y

|f(y)| = 0 ⇔ |f(y)| = 0 ∀ y ⇔ f = 0.

Hence, ‖.‖ is a norm.

Proposition 2.4.1. L is Banach.

Proof. Let (fi) be a Cauchy sequence in L. Then the sequence (fi(x)) is
Cauchy in R for all x ∈ Y , and since R is complete the sequence converges.
Hence we may define a function f : Y → R by setting

f(x) = lim
i→∞

fi(x)

Hence fi → f pointwise. Furthermore, if we define

Mi = sup
y∈Y

|fi(y)|
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then the sequence (Mi) is also Cauchy in R and hence convergent - hence

M = lim
i→∞

Mi = sup
y∈Y

|f(y)|

and so f is bounded. Moreover, since ‖.‖ is the sup-norm, it follows that
fi → f uniformly, and so f is continuous. Hence f ∈ L and so L is complete.

Let a ∈ Y , and consider the bounded continuous function fa : Y → R
defined by

fa(y) = d(a, y) ∀ y ∈ Y.

Clearly, fa ∈ L. Denote

χ : Y → L; a 7→ fa

Lemma 2.4.2. The function χ is an isometry, called the canonical isometric
embedding of the bounded metric space Y into L.

Proof. Let a, b ∈ Y . Then we have

d(a, b) = |fa(b)| = |fa(b)−fb(b)| ≤ ‖fa−fb‖ = sup
y∈Y

|d(a, y)−d(b, y)| ≤ d(a, b).

Hence,
d(χ(a), χ(b)) = ‖fa − fb‖ = d(a, b).

Thus, χ is an isometry.

Theorem 2.4.3 (The Eilenberg-Wojdyslawski theorem). Let Y be a
bounded metric space. The image χ(Y ) of the canonical isometric embed-
ding χ : Y → L into the Banach space L = C(Y ) = {f : Y → R :
f is bounded and continuous} is a closed subset of the convex hull Z of χ(Y )
in L.

Proof. It suffices to show that Z\χ(Y ) is open in Z. Let g ∈ Z\χ(Y ).
Since Z is the convex hull of χ(Y ) there exists a finite number of points
a1, a2, ..., an ∈ Y such that

g =
n
∑

i=1

tifi where fi = χ(ai),
n
∑

i=1

ti = 1, ti ∈ R+ ∀ i = 1, ..., n.
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Since g /∈ χ(Y ) it follows that g 6= fi ∀ i = 1, ..., n. Choose δ ∈ R such
that 0 < δ < 1

2
d(g, fi) ∀ i = 1, ..., n where d now denotes the metric in L

defined by the norm.
Denote by Vδ the open neighborhood of g in Z given by

Vδ = {Φ ∈ Z : d(g, Φ) < δ}.

We now show that Vδ ⊂ Z\χ(Y ), because then since g was arbitrarily chosen,
Z\χ(Y ) must be open.

Assume that y ∈ Y is such that f = χ(y) ∈ Vδ. By the choice of δ we
have that

d(χ(ai), χ(y)) = d(fi, f) ≥ d(g, fi) − d(g, f) > 2δ − δ = δ ∀ i = 1, ..., n.

Hence we obtain

d(g, f) = ‖g − f‖ ≥ |g(y) − f(y)| = |g(y)| =
n
∑

i=1

tifi(y) > (
n
∑

i=1

ti)δ = δ.

It follows that f /∈ Vδ, which is a contradiction. Hence Vδ ⊂ Z\χ(Y ) and
so Z\χ(Y ) is open in Z. Hence χ(Y ) is closed in Z.

2.5 ANE versus ANR

As mentioned before, it can be shown that for metrizable spaces, the concepts
of AE/ANE and AR/ANR are essentially the same (in fact, Väisälä gives
the definition of AE/ANE as AR/ANR). This section is devoted to showing
exactly that.

Theorem 2.5.1. Consider M , the weakly hereditary class of metrizable
spaces. Any space Y ∈ M is an ANE (or AE) for M if and only if it
is an ANR (or AR) for M .

Proof. I will only include the proof for ANE/ANR. The proof for AE/AR is
similar.

”⇒” Let Y be an ANE for M , and let h : Y → Z0 be an arbitrary
homeomorphism onto a closed subspace Z0 of a space Z ∈ M . Since Y is an
ANE for M the map h−1 : Z0 → Y has a continuous extension g : U → Y
for some open neighborhood U of Z0 in Z. Then r = h ◦ g : U → Z0 is a
retraction and hence Y is an ANR for M .
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”⇐” Let Y be an ANR for M , and give Y a bounded metric (For every
metric space X with metric d there is a bounded metric d′ which is equivalent
to d, i.e. (X, d) is homeomorphic to (X, d′)) and consider the canonical
isometric embedding χ : Y → L = C(Y ), where L is Banach. By Thm
( 2.4.3) the homeomorphic image Z0 = χ(Y ) is a closed subset of the convex
hull Z of χ(Y ). Since Z is a subspace of a metrizable space L, it is metrizable;
hence Z ∈ M . Since Y is an ANR for M there exists a neighborhood V of
Z0 in Z and a retraction r : V → Z0.

Now, if X is metrizable, A is a closed subset of X and f : A → Y is a
mapping, then by Dugundji’s extension theorem 2.3.6, the mapping

Φ = χ ◦ f : A → L

has an extension

Ψ : X → L

such that Ψ(X) is contained in the convex hull of Φ(A) ⊂ χ(Y ); hence
Ψ(X) ⊂ Z since Z is the convex hull of χ(Y ). Then U = Ψ−1(V ) is a
neighborhood of A in X:

Clearly U is open since Ψ is continuous. Furthermore,

Ψ(A) = χ (f(A)) ⊂ χ(Y ) = Z0 ⊂ V

and thus it follows that

A ⊂ Ψ−1(V ) = U.

Now define

g : U → Y

by

g(x) = χ−1(r(Ψ(x))) ∀x ∈ U.

Then g is an extension of f over U :

a ∈ A ⇒
g(a) = χ−1(r(Ψ(a))) = χ−1(r(Φ(a))) since Ψ is an extension of Φ

= χ−1(r(χ(f(a))))
= χ−1(χ(f(a))) since χ(f(a)) ∈ χ(Y ) = Z0

and r is a retraction
= f(a).

Hence Y is an ANE for M .
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2.6 Dominating spaces

The main goal of this section is to prove that any ANR is dominated by
some simplicial polytope with the Whitehead topology. In order to prove
that result, there are some definitions and lemmas to be studied. Reference:
[5].

Lemma 2.6.1. Let α be an open covering of an open subset W of a convex
set Z in a locally convex space L (that is, the elements of α are contained in
and open in W ). Then α has an open refinement

γ = {Wµ : µ ∈ M}

such that Wµ is convex for all µ ∈ M .

Proof. Let a ∈ W ; then there exists a neighborhood U ∈ α (that is, U is
open in W ) such that a ∈ U . Because U is open in W , and W is open in Z,
it follows that U is open in Z. Now, because Z ⊂ L has the relative topology,
there exists an open set V in L such that

U = V ∩ Z.

Now, since L is locally convex there exists a convex open set V ′ in L s.t.

a ∈ V ′ ⊂ V.

Now,
a ∈ V ′ ∩ Z ⊂ V ∩ Z = U,

and V ′ ∩ Z is convex since both V ′ and Z are convex. Furthermore,
V ′ ∩ Z is open in W because it is open in Z. Hence V ′ ∩ Z is a convex
open neighborhood of a in W , which we may denote Wa. Construct such a
neighborhood Wa for each point a ∈ W ; now

γ = {Wa : a ∈ W}

is an open cover of W whose elements are convex and for each Wa there
exists a neighborhood U ∈ α such that Wa ⊂ U .

It follows that γ is a refinement of α as desired.

Lemma 2.6.2. A normed space X (and in particular a Banach space such
as L = C(Y ) from section ( 2.4)) is locally convex.

41



Proof. A normed space is metrizable and hence, if d is a metric defining
the topology in X (induced by the norm) then for every a ∈ X and every
neighborhood U of a in X there exists a real number δ > 0 such that B(a, δ) ⊂
U , and thus X is locally convex, since the balls B(a, δ) are convex.

Lemma 2.6.3. A convex subset A of a locally convex set X (in particular,
a Banach space) is locally convex.

Proof. Let a ∈ A, and let V be a neighborhood of a in A. Then there exists
a neighborhood U of a in X such that V = A∩U . Since X is locally convex,
there exists a convex neighborhood U ′ of a in X such that U ′ ⊂ U . Since
A is convex, the set V ′ = A ∩ U ′ is a convex neighborhood of a in A, and
moreover, V ′ = A ∩ U ′ ⊂ A ∩ U = V . Hence A is locally convex.

Definition 2.6.4 (Near maps). Let α = {Uλ : λ ∈ Λ} be a covering of a
topological space Y . Two maps f, g : X → Y are α-near if and only if

∀ x ∈ X ∃ λ ∈ Λ such that f(x) ∈ Uλ and g(x) ∈ Uλ.

Lemma 2.6.5. If Y is a metrizable ANR then there exists an open covering
α of Y such that any two α-near maps f, g : X → Y defined on an arbitrary
space X are homotopic.

Proof. By Theorem ( 2.4.3), we may consider Y as a closed subset of the
convex set Z (= convex hull of χ(Y )) in the Banach space L = C(Y ) (here
we identify Y with its isometric image χ(Y ) ⊂ Z).

Since Y is an ANR there exists a neighborhood W of Y in Z and a
retraction r : W → Y .

Let β be some open covering of W (that is, its elements are open subsets
of W ). W is an open subset of a convex set Z in the locally convex set L
(Lemma 2.6.2), and by Lemma ( 2.6.1), β has an open refinement

γ = {Wµ : µ ∈ M}

such that Wµ is convex for all µ ∈ M . For each µ ∈ M , denote Vµ =
Wµ ∩ Y . Then

α = {Vµ : µ ∈ M}

is an open covering (open in Y ) of Y .
Now let f, g : X → Y be two α-near maps defined on a space X. Since

Z is convex, we can define a homotopy kt : X → Z (where 0 ≤ t ≤ 1) by
setting
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kt(x) = (1 − t)f(x) + tg(x) ∀ x ∈ X, t ∈ I.

Claim: kt(x) ∈ W for all x ∈ X, t ∈ I
Proof: Let x ∈ X. Since f and g are α-near there exists µ ∈ M such that
f(x), g(x) ∈ Vµ ⊂ Wµ. Since Wµ is convex,

kt(x) ∈ Wµ ⊂ W ∀ t ∈ I.�

Finally, define a homotopy ht : X → Y , where 0 ≤ t ≤ 1, by setting

ht(x) = r[kt(x)] ∀ x ∈ X, t ∈ I

Because both r and kt are continuous, ht is continuous, and moreover,
since r is a retraction, we have that h0 = r ◦ k0 = r ◦ f = f and, similarly,
h1 = g.

It follows that ht is a homotopy from f to g.

Definition 2.6.6 (Partial realizations of polytopes). Let Y be a topo-
logical space, and let α = {Uλ : λ ∈ Λ} be a covering of Y . Let K be a
simplicial polytope with the Whitehead topology, and let L be a subpolytope
of K which contains all the vertices of K.

A partial realization of K in Y relative to α defined on L is a map

f : L → Y

such that for every closed simplex σ of K there exists λ ∈ Λ for which

f(L ∩ σ) ⊂ Uλ.

In the case where L = K the function f is called a full realization of K
in Y relative to α.

Lemma 2.6.7. If a metrizable space Y is an ANR, then every open covering
α of Y has an open refinement β such that every partial realization of any
simplicial polytope K with Whitehead topology in Y relative to β extends to
a full realization of K relative to α.

Proof. Again, by Lemma ( 2.4.3), we may consider Y as a closed subspace
of a convex set Z in the Banach space C(Y ).

Since Y is an ANR there exists an open neighborhood W of Y in Z and
a retraction r : W → Y . Being a convex set in a Banach space, Z is locally
convex, by Lemma ( 2.6.3).
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Let α = {Uλ : λ ∈ Λ} be a given open covering of Y ; we construct a
refinement β in the following way:

Let y ∈ Y be any point, and choose a λ ∈ Λ such that y ∈ Uλ. Since Z
is locally convex there exists a convex neighborhood Ny of y in Z such that
Ny ⊂ W and r(Ny) ⊂ Uλ.

Set Vy = Ny ∩ Y . It follows that

Vy = r(Ny ∩ Y ) ⊂ r(Ny) ⊂ Uλ

and thus

β = {Vy : y ∈ Y }

is an open refinement of α.

We now wish to show that β satisfies the given condition.

Let f : L → Y be a partial realization of a polytope K in Y relative to
β. If i : Y →֒ Z is the inclusion map, then consider the composition

Φ = i ◦ f : L → Z.

We will construct an extension Ψ : K → Z:
Let σ be any closed simplex of K, and let Hσ denote the convex hull of

Φ(L ∩ σ) in Z. Define

K
n

= Kn ∪ L

where Kn is the n-skeleton of K. By induction we construct a sequence
of maps

Ψn : K
n
→ Z n = 0, 1, 2, ...

satisfying the following conditions:

i) Ψ0 = Φ

ii) Ψn|K
n−1

= Ψn−1 n > 0

iii) Ψn(K
n
∩ σ) ⊂ Hσ for each closed simplex σ of K.

Now Ψ0 is defined by i) - hence we assume that n > 0 and that Ψn−1 has
been constructed. We will extend Ψn−1 to the interior of each n-dimensional
simplex σ of K which is not contained in L. The boundary ∂σ is a subset of
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K
n−1

, and hence Ψn−1 is defined there. Furthermore, because Hσ is a convex
subset of a Banach space, it follows from Corollary ( 2.3.7) that Ψn−1|∂σ has
an extension

κσ : σ → Hσ

We now define Ψn by setting

Ψn(x) =

{

Ψn−1(x) x ∈ K
n−1

κσ(x) x ∈ σ ⊂ K
n
\ L

Claim: Ψn is continuous and satisfies the conditions i) - iii).

Proof: By induction on n. K
0

= L so Ψ0 is continuous. Assume that Ψm is
continuous for all m < n, and let σ be a simplex in K

n
. If σ is not a simplex

of L, then by the definition of κσ, Ψn is continuous on σ.
If σ is a simplex of L then σ ⊂ K

m
∀ m and

Ψn|σ = Ψn−1|σ = ... = Ψ0|σ = Φ|σ

which is continuous. Hence Ψn is continuous on each simplex σ in K
n

and so it is continuous on K
n
.

It is now easy to verify that Ψn satisfies the conditions i) - iii). �

Hence we have constructed a sequence of maps {Ψn : n = 0, 1, 2, ...}.
Next, we define a map Ψ : K → Z by setting

Ψ(x) = Ψn(x) if x ∈ K
n
.

Claim: Ψ is continuous
Proof: Let σ be a simplex in K, and let n = dim(σ). Then Ψ||σ| = Ψn||σ| is
continuous in |σ| and hence Ψ is continuous on K. �

We now wish to show that Ψ(K) ⊂ W . Let σ be any closed simplex of
K. Because f : L → Y is a partial realization relative to β, there exists a
point y ∈ Y such that

Φ(L ∩ σ) = f(L ∩ σ) ⊂ Vy ⊂ Ny

and since Ny is convex, we have that

Ψ(σ) ⊂ Hσ ⊂ Ny ⊂ W

Hence Ψ(K) ⊂ W .
Finally, we construct a map g : K → Y by
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g(x) = r[Ψ(x)] for every x ∈ K.

Because Ψ is an extension of Φ, we have that g is an extension of f . We
just need to show that g is a full realization relative to α.

Let σ be any closed simplex in K. We have just shown that there is a
y ∈ Y such that Ψ(σ) ⊂ Ny, and from the way Ny is constructed we know
that there is a λ ∈ Λ such that r(Ny) ⊂ Uλ.

Hence

g(σ) = r[Ψ(σ)] ⊂ r(Ny) ⊂ Uλ ∈ α

and so g is a full realization of K in Y relative to α.

Definition 2.6.8 (Dominating spaces). A space X dominates the space
Y if and only if there are maps

Φ : X → Y

Ψ : Y → X

such that the map Φ ◦ Ψ : Y → Y is homotopic to IdY . Then X is said
to be a dominating space of Y .

Theorem 2.6.9. Let Y be a metrizable ANR. Then there exists a simplicial
polytope X with the Whitehead topology which dominates Y .

Proof. By Lemma ( 2.6.5) there exists an open covering α of Y such that any
two α-near maps f, g : X → Y for any space X are homotopic. By Lemma
( 2.6.7) there is an open refinement β of α such that any partial realization
of any simplicial polytope K with the Whitehead topology in Y relative to
β can be extended to a full realization of K in Y relative to α.

Being a metrizable space, Y is paracompact (Theorem 1.5.13) and fully
normal (Proposition 1.6.4), and hence β has a neighborhood-finite open star
refinement γ. Let X denote the geometric nerve of γ with the Whitehead
topology. We will show that X dominates Y .

Let X0 denote the 0-skeleton (i.e. the polytope corresponding to the
simplicial complex consisting of the vertices of X) of X, and define a map

Φ0 : X0 → Y
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in the following way:
For each open set U ∈ γ pick a point yU ∈ U , and define Φ0 by setting

Φ0(vU) = yU

where vU is the vertex of X corresponding to U . Now, since X0 is discrete,
Φ0 is continuous. Furthermore, if |σ| is a closed simplex in X, whose vertices
are vU0

, ..., vUq
, then by the definition of a nerve,

U0 ∩ U1 ∩ ... ∩ Uq 6= ∅

Now, because γ is a star refinement of β, there exists an open set Vσ ∈ β
which contains each Ui, i = 0, 1, ..., q. It follows that Φ0(|σ| ∩ X0) ⊂ Vσ,
and so Φ0 is a partial realization of X in Y relative to β defined on X0.

By the choice of the covering β, Φ0 extends to a full realization

Φ : X → Y

relative to α. Then for any closed simplex |σ| of X there exists an open
set Wσ ∈ α such that

Φ(|σ|) ⊂ Wσ

for each closed simplex |σ| of X. Considering the proof of Lemma ( 2.6.7)
we may assume that Vσ ⊂ Wσ for each simplex σ of X.

Now consider the canonical map

κ : Y → X

of the locally finite covering γ as defined in the proof of Lemma ( 2.3.4).
We will show that the maps

Φ ◦ κ : Y → Y

and

Id : Y → Y

are α-near, so that by the definition of the covering α they will be homo-
topic.

Let y ∈ Y be an arbitrarily chosen point, and let U0, U1, ...Uq be the sets
of β containing y. Then κ(y) is a point of the open simplex 〈σ〉 of X with
vertices vU0

, ..., vUq
. It follows that
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Φ(κ(y)) ∈ Wσ

On the other hand,

y ∈ Ui ⊂ Vσ ⊂ Wσ

and so Φ ◦ κ and IdY are α-near.

Hence Φ ◦ κ is homotopic to IdY and so X dominates Y .

2.7 Manifolds and local ANRs

References: [3], [5]

In this section we will show that each topological manifold is indeed an
ANR. In this section, ANR denotes an ANR for the class M of metrizable
spaces.

Definition 2.7.1 (Topological manifold). A topological space X is called
a topological n-manifold, where n ∈ N, if

i) X is Hausdorff

ii) X is N2

iii) Each point x ∈ X has a neighborhood which is homeomorphic to Rn.

Remark 2.7.2. Recall from Topology II that a topological manifold is metriz-
able and separable.

Definition 2.7.3 (Local ANR/ANE). A metrizable space Y is a local
ANR if each point y ∈ Y has a neighborhood which is an ANR.

For any class of spaces there is a similar definition if ANR is replaced by
ANE, but in the case of metric spaces these two concepts are the same by
Theorem ( 2.5.1).

Example 2.7.4. A topological manifold is a local ANR.
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Proof. Let Y be a topological n-manifold, and let y ∈ Y be any point.
Now y has a neighborhood V which is homeomorphic to Rn. Let X be any
metrizable space and let A be any closed subset of X. Let

f : A → V

be any continuous function, and let

h : V → Rn

be the homeomorphism between V and Rn. Now

h ◦ f : A → Rn

is a mapping, and furthermore, Rn is a locally convex topological linear
space. Hence by Dugundji’s extension theorem ( 2.3.6) there is a continuous
extension

g : X → Rn,

and hence

h−1 ◦ g : X → V

is a continuous extension of f . It follows that V is an ANE (in fact an
AE, and thus an ANE); hence, since it is also metrizable it is an ANR, and
so Y is a local ANR.

Lemma 2.7.5. Every open subspace of an ANE for the class C is an ANE
for C .

Proof. Let Y be an ANE for the class C and let W be an open subspace
of Y . Let f : A → W be any map defined on a closed subspace A of an
arbitrary space X from C . Since Y is an ANE for C , the composed mapping

i ◦ f : A → W →֒ Y

has an extension

g : V → Y

over a neighborhood V of A in X. Now denote

U = g−1(W ) ⊂ V ;
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since g is continuous and W is open in Y , U is an open subset of V and
hence of X. Furthermore, since g(A) = f(A) ⊂ W , U is a neighborhood of
A in X.

Denote

h = g|U : U → W,

now h is an extension of f over U and hence W is an ANE for C .

Theorem 2.7.6. A separable metrizable space X which is a local ANR is an
ANR.

Proof. The theorem will be proved in three steps:

i) If X is the union of two open ANRs it is an ANR.

ii) If X is the union of countably many disjoint open ANRs it is an ANR.

iii) If X is the union of arbitrarily many open ANRs it is an ANR.

The proof goes as follows:

i) Assume that X = A1 ∪A2 where A1 and A2 are open ANRs, or equiv-
alently, ANEs. Let f : B → X where B is a closed subspace of some
metrizable space Y . Now the sets

F1 = B \ f−1(A2); F2 = B \ f−1(A1)

are disjoint and closed in B; hence also in Y . Now since Y is normal
there are disjoint open sets Y1 and Y2 in Y such that

F1 ⊂ Y1; F2 ⊂ Y2.

Now Y0 = Y \ (Y1 ∪ Y2) is closed in Y . Denote Bi = Yi ∩ B where
i = 0, 1, 2. We then see that

a) f(B0) ⊂ A1 ∩ A2; b) f(B1) ⊂ A1; c) f(B2) ⊂ A2

since
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a)
x ∈ B0 ⇒ x ∈ Y0 ∧ x ∈ B

⇒ x /∈ (Y1 ∪ Y2) ∧ x ∈ B
⇒ x /∈ (F1 ∪ F2) ∧ x ∈ B
⇒ x ∈ f−1(A2) ∧ x ∈ f−1(A1)
⇒ f(x) ∈ A2 ∧ f(x) ∈ A1.

b)
x ∈ B1 ⇒ x ∈ Y1 ∧ x ∈ B

⇒ x /∈ Y2 ∧ x ∈ B
⇒ x /∈ F2 ∧ x ∈ B
⇒ x ∈ f−1(A1)
⇒ f(x) ∈ A1.

c) In the same way f(B2) ⊂ A2.

Because B0 ⊂ Y0 is closed and A1 ∩ A2 is an ANR by Lemma ( 2.7.5),
there is an extension of the mapping f |B0

: B0 → A1 ∩ A2 to some
open neighborhood U0 of B0 in Y0. This extension and the original
mapping f agree on B0 = B ∩ U0, so combined they define a function
g : B ∪ U0 → X. Because

U0 = (U0 ∪ B) ∩ Y0,

U0 is closed in U0∪B. Since B is closed in Y it is also closed in U0∪B.
Hence, by Lemma ( 1.4.1), g is continuous.

Now it holds that

g(U0 ∪ B1) ⊂ A1; g(U0 ∪ B2) ⊂ A2

since

g(U0 ∪ B1) = g(U0) ∪ f(B1) ⊂ A1; g(U0 ∪ B2) = g(U0) ∪ f(B2) ⊂ A2

and Y0 \ U0 is closed in Y .

Also, the set U0 ∪ B1 is closed in U0 ∪ Y1 because

(U0 ∪ Y1) \ (U0 ∪ B1) = Y1 \ B1 = Y1 \ B
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which is open in Y . Now, since A1 is an ANR we may extend g| :
(U0 ∪B1) → A1 to a mapping g1 : U1 → A1 where U1 is an open neigh-
borhood of U0 ∪ B1 in U0 ∪ Y1. Since Y0 \ U0 was closed in Y , the set
U0 ∪ Y1 is open in Y0 ∪ Y1, and hence U1 is open in Y0 ∪ Y1.

Analogously, one may extend the mapping g| : (U0 ∪ B2) → A2 to an
open neighborhood U2 of U0 ∪B2 in U0 ∪ Y2, and again we see that U2

is open in Y0 ∪ Y2.

Denote U = U1 ∪ U2 and define F : U → X by setting

F (u) =

{

g1(u) if u ∈ U1,
g2(u) if u ∈ U2.

If now x ∈ U0 = U1 ∩ U2 then g(x) = g1(x) = g2(x). It follows that
F is well defined. Because U1 = U \ Y2 and U2 = U \ Y1 the sets U1

and U2 are closed in U ; hence by Lemma ( 1.4.1) F is continuous. It
is clear that F is an extension of f and it remains to show that U is a
neighborhood of B in Y .

We have already seen that Ui is open in Y0 ∪ Yi for i = 1, 2, and it
follows that

Y \ U = ((Y0 ∪ Y1) \ U1) ∪ ((Y0 ∪ Y2) \ U2)

which is then closed. Hence U is open. It follows that X is an ANE,
or equivalently, an ANR.

ii) Now assume that X =
⋃

n∈N
An where the An are disjoint open ANRs.

Then suppose that X is embedded as a closed subset of some metriz-
able space Z, and let d be a metric on Z. Now, since each Ai is the
complement of an open subset of X it is closed in X and hence in Z.
Find some collection {Un : n ∈ N} of disjoint open subsets of Z such
that An ⊂ Un for each n ∈ N. (This may be done, for instance, by
choosing Un = {z ∈ Z : d(z, An) < d(z,X \ An)}.) An being an ANR,
and also being a closed subset of Un, there is some open set Vn ⊂ Un

and a retraction rn : Un → An. These retractions then define a re-
traction r :

⋃

n∈N
Vn → X by setting r(x) = rn(x) whenever x ∈ Vn.

Because
⋃

n∈N
Vn is an open subset of Z which contains X, we see that

X is an ANR.
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iii) We now assume that X is any union of open ANRs Ai. Since X is
metrizable and separable it is Lindelöf, and so there exists a countable
set {Ai : i ∈ N} of these ANRs such that X =

⋃

i∈N
Ai. However, the

Ai are not necessarily disjoint so we cannot yet use part ii).

Define new open sets

Un =
n
⋃

i=1

Ai.

By part i) we see that each Un is an ANR, and it is clear that X =
⋃

n∈N
Un and that Un ⊂ Un+1 for all n ∈ N.

Define open sets Vn for all n ∈ N by setting

Vn = {x ∈ X : d(x, UC
n ) <

1

n
}

where d is a metric defining the topology on X. Now Vn ⊂ Un and Vn

is open; hence Vn is an ANR. Furthermore,

X =
⋃

n∈N

Vn; and ∀n ∈ N : V n ⊂ Vn+1

Now define open sets Wn for all n ∈ N by setting

W1 = V1; W2 = V2; Wn = Vn \ V n−2 when n ≥ 3.

It is clear that each Wn is open in X and that Wn ⊂ Vn. Hence Wn is
an ANR. Furthermore, Vn \ Vn−1 ⊂ Wn and so

X =
⋃

n∈N

Wn =

(

⋃

n∈N

W2n

)

∪

(

⋃

n∈N

W2n−1

)

where
⋃

n∈N
W2n and

⋃

n∈N
W2n−1 are unions of disjoint open ANRs;

hence by ii) they are ANRs, and so by i) X is an ANR.

Theorem 2.7.7. A topological manifold is an ANR.
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Proof. By Example ( 2.7.4) a manifold is a local ANR, and by Theorem
( 2.7.6) it is an ANR.
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Chapter 3

Homotopy theory

In order to show that an ANR is homotopy equivalent to a CW-complex we
will use elements of homotopy theory such as higher homotopy groups and
weak homotopy equivalence. This chapter provides the required machinery
in addition to a survey of CW-complexes, and concludes with the result that
any ANR is homotopy equivalent to a CW-complex.

3.1 Higher homotopy groups

References: [7], [8]

Just like the elements of the fundamental group π1(X, x0) of a topological
space X based at a point x0 ∈ X can be seen as equivalence classes of
mappings f : S1 → X, we may define new groups πn(X, x0) whose elements
are equivalence classes of mappings g : Sn → X. Such a group will be called
the nth homotopy group of X.

In this section we define the higher homotopy groups of a space and then
prove some of their basic properties.

We begin by defining the nth homotopy group as a set only; in the set of
mappings (Sn, e0) → (X, x0) where e0 = (0, 0, ..., 0, 1) ∈ Sn and x0 are the
base points of the spaces Sn and X, two mappings f, g : (Sn, e0) → (X, x0)
belong to the same equivalence class if and only if f ≃ g rel e0. In that case
the equivalence class is written [f ] = [g]. We define πn(X, x0) = {[f ]|f :
(Sn, e0) → (X, x0)}.

The proofs of the following basic lemmas etc were covered in the course
Homotopy theory, so here I will only state the results.
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From now on we will denote by [Y,B; X, x0] the set of homotopy classes
rel B of mappings (Y,B) → (X, x0).

Lemma 3.1.1. Define the mapping Φ : B
n
→ Sn by setting

Φ(x) = (2
√

1 − |x|2x, 2|x|2 − 1) ∈ Rn × R.

Then Φ(Sn−1) = e0 = (0, 0, ..., 0, 1) ∈ Rn+1 and Φ induces a homeomor-
phism Φ♯ : B

n
/Sn−1 → Sn.

It follows from this that the mapping [f ] 7→ [f◦Φ] is a bijection πn(X, x0) →
[B

n
, Sn−1; X, x0].

Since B
n

is homeomorphic to In and the homeomorphism between them
takes the boundary of one to the boundary of the other, we have in fact a
bijection between the set πn(X, x0) as defined and the set [In, ∂In; X, x0].
Hence the elements of πn(X, x0) may be seen as equivalence classes rel ∂In

of mappings f : (In, ∂In) → (X, x0).

We define a binary operation in πn(X, x0) by setting [f ][g] = [fg], where
the product fg is defined analogously to as in the case of the fundamental
group:

For two maps f, g : (In, ∂In) → (X, x0) their product is

fg : (In, ∂In) → (X, x0),

fg ((x1, x2, ..., xn)) =

{

f ((2x1, x2, ..., xn)) , 0 ≤ x1 ≤
1
2

g ((2x1 − 1, x2, ..., xn)) , 1
2
≤ x1 ≤ 1

Then, since fg is continuous on the two closed sets {(x1, ..., xn) ∈ In :
x1 ≤

1
2
} and {(x1, ..., xn) ∈ In : x1 ≥

1
2
} and agrees on their intersection it is

continuous on all of In by Lemma ( 1.4.1), and clearly fg(∂In) = x0, so fg
is well defined.

Lemma 3.1.2. The set πn(X, x0) with the binary operation defined above is
a group.

Let (X, x0) and (Y, y0) be topological spaces with base points x0 and y0,
and let f : (X, x0) → (Y, y0) be a mapping. If g : (Sn, s) → (X, x0) is
a mapping then so is f ◦ g : (Sn, s) → (Y, y0); and furthermore, if g1, g2 :
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(Sn, s) → (X, x0) such that g1 ≃ g2 rel s, then f ◦ g1 ≃ f ◦ g2 rel s. Hence
we obtain a well-defined mapping

f∗ : πn(X, x0) → πn(Y, y0)

induced by f which is defined by f∗([g]) = [f ◦g] whenever g ∈ πn(X, x0).

Proposition 3.1.3. i) f∗ is a homomorphism.

ii) (IdX)∗ = Idπn(X,x0).

iii) (f ◦ g)∗ = f∗ ◦ g∗.

iv) If f0 ≃ f1 rel x0 then (f0)∗ = (f1)∗.

v) If f : X → Y is a homotopy equivalence, then f∗ : πn(X, x0) →
πn(Y, f(x0)) is a group isomorphism for all n ∈ N and for all base
points x0 ∈ X.

Definition 3.1.4 (Relative homotopy group). Let (X,A) be a pair of
topological spaces - that is, X is a topological space and A is a subspace of
X. Now we define the relative homotopy group of the space X with respect
to A at a base point x0 ∈ A as follows:

Given the n-cube In, where n ≥ 1, let In−1 denote the face of In where
the coordinate tn = 0. The union of the remaining faces will be denoted Jn−1.
Then we have

∂In = In−1 ∪ Jn−1; ∂In−1 = In−1 ∩ Jn−1.

Consider mappings

f : (In, In−1, Jn−1) → (X,A, x0);

that is, continuous functions f : In → X such that f(In−1) ⊂ A and
f(Jn−1) = {x0}.

We denote by πn(X,A, x0) the set of homotopy classes [f ] rel Jn−1 of
such mappings f (where the homotopy maps In−1 into A), and we define
multiplication in πn(X,A, x0) as we did earlier in πn(X, x0). We may show
in the exact same way that πn(X,A, x0) with this multiplication is a group
when n ≥ 2, and we call it thus the nth relative homotopy group of X with
respect to A at x0.

Proposition 3.1.5. If α ∈ πn(X,A, x0) is represented by a mapping

f : (In, In−1, Jn−1) → (X,A, x0)

such that f(In) ⊂ A, then α = 0.
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Proof. Define a homotopy

F : In × I → X

by setting

F ((t1, ..., tn−1, tn), t) = f(t1, ..., tn−1, t + tn − ttn).

Then, since t+tn−ttn = t(1−tn)+tn ∈ I we get that Ft : (In, In−1, Jn−1) →
(X,A, x0) for all t ∈ I and

F0 = f ; F1(I
n) = {x0}

since (t1, ..., tn−1, 1) ∈ Jn−1 and f(Jn−1) = {xo}. Hence α = 0.

3.2 The exact homotopy sequence of a pair

of spaces

Reference: [7]

Let X be a topological space, let x0 ∈ A ⊂ X and let n ≥ 1. We will
define a function

δ : πn(X,A, x0) → πn−1(A, x0).

which is a group homomorphism for n > 1. Assume that α ∈ πn(X,A, x0).
Then α is the equivalence class of some mapping f : (In, In−1, Jn−1) →
(X,A, x0).

If n = 1, then In−1 is a point; hence f(In−1) is a point of A defining a
path component β ∈ πn−1(A, x0) of A.

If n > 1, then the restriction f |In−1 is a mapping (In−1, ∂In−1) → (A, x0)
and thus it represents some element (that is, a homotopy class) β ∈ πn−1(A, x0).

Obviously the element β ∈ πn−1(A, x0) does not depend on the choice of
f representing the homotopy class α ∈ πn(X,A, x0). Thus we may define the
function δ by setting

δ(α) = β.

The function δ will be called the boundary operator.

The following propositions are trivial:
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Proposition 3.2.1.

δ(eπn(X,A,x0)) = eπn−1(A,x0). �

Proposition 3.2.2. If n > 1 then δ is a group homomorphism. �

The inclusion maps

i : (A, x0) →֒ (X, x0), j : (X, x0) →֒ (X,A, x0)

induce functions

i∗ : πn(A, x0) → πn(X, x0), j∗ : πn(X, x0) → πn(X,A, x0)

which are homomorphisms for n ≥ 1 and n ≥ 2, respectively.

(Note that j is in fact (X, {x0}, x0) →֒ (X,A, x0) but that since f :
(In, ∂In) → (X, x0) is equivalent to f : (In, In−1, Jn−1) → (X, {x0}, x0) we
may identify πn(X, x0) with πn(X, {x0}, x0).)

We may now define a sequence

...
j∗
→ πn+1(X,A, x0)

δ
→ πn(A, x0)

i∗→ πn(X, x0)
j∗
→ πn(X,A, x0)

δ
→ πn−1(A, x0) → ...

→ π1(X,A, x0)
δ
→ π0(A, x0)

i∗→ π0(X, x0).

which is called the homotopy sequence of the pair (X,A) with respect to
the base point x0 ∈ A.

Definition 3.2.3 (Exact sequence). A sequence

... → Gi+1
fi→ Gi

fi−1

→ Gi−1 → ...

of groups and homomorphisms is said to be exact if, for each i ∈ N,
Ker(fi−1) = Im(fi).

Remark 3.2.4. If the sequence ends, as in the case of the homotopy se-
quence, then no restriction is put on the image of the last mapping. Fur-
thermore, if the last sets are not groups and thus the last mappings are not
homomorphism, the same definition of exatness holds even for those last
steps.
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Theorem 3.2.5 (The exact homotopy sequence of a pair). The ho-
motopy sequence of any pair (X,A) with respect to any base point x0 ∈ A is
exact.

Proof. The proof breaks up into six statements:

i) j∗i∗ = 0.

ii) δj∗ = 0.

iii) i∗δ = 0.

iv) If α ∈ πn(X, x0) and j∗(α) = 0, then there exists an element β ∈
πn(A, x0) such that i∗(β) = α.

v) If α ∈ πn(X,A, x0) and δ(α) = 0, then there exists an element β ∈
πn(X, x0) such that j∗(β) = α.

vi) If α ∈ πn−1(A, x0) and i∗(α) = 0, then there exists an element β ∈
πn(X,A, x0) such that δ(β) = α.

Now, from i) we get that Im(i∗) ⊂ Ker(j∗); and from iv) we get that
Ker(j∗) ⊂ Im(i∗); hence Im(i∗) = Ker(j∗). Similarly, ii) and v) give
Im(j∗) = Ker(δ), and iii) and vi) give Im(δ) = Ker(i∗). Thus it suffices to
show that the statements i)-vi) are true.

Proof of i) For each n > 0, let α ∈ πn(A, x0) and let f : (In, ∂In) → (A, x0) be
a map belonging to the homotopy class α. Now the element j∗i∗(α) ∈
πn(X,A, x0) is the homotopy class of the map

j ◦ i ◦ f : (In, In−1, Jn−1) → (X,A, x0),

and since (j ◦ i ◦ f)(In) ⊂ A we get from Proposition ( 3.1.5) that
j∗i∗α = 0. Since α was an arbitrary element of πn(A, x0), it follows
that j∗i∗ = 0.

Proof of ii) For each n > 0, let α ∈ πn(X, x0) and choose a mapping f : (In, ∂In) →
(X, x0) belonging to the homotopy class α. Then the element δj∗(α) is
determined by the restriction (j ◦f)|In−1 = f |In−1 , and since f(In−1) =
{x0} it follows that (δ ◦ j∗)(α) = 0. Hence δ ◦ j∗ = 0.
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Proof of iii) For each n > 0, let α ∈ πn(X,A, x0) and choose a map f : (In; In−1, Jn−1) →
(X,A, x0) which is in the homotopy class α. Then the element i∗δ(α) ∈
πn−1(X, x0) is determined by the restriction g = f |In−1 . Define a ho-
motopy G : In−1 × I → X by setting

G ((t1, ..., tn−1), t) = f(t1, ..., tn−1, t).

Then G0 = g, G1(I
n−1) = {x0} and Gt : (In−1, In−2) → (X, x0) if

n > 1, hence [g] = 0 ∈ πn−1(X, x0). If n = 1 then G(In−1 × I) is
contained in one path component of X - the one containing x0. Hence
[g] = 0 ∈ π0(X, x0). This implies that (i∗ ◦ δ)(α) = 0; hence i∗ ◦ δ = 0.

Proof of iv) Let f : (In, ∂In) → (X, x0) be a mapping in the homotopy class α.
Then since j∗(α) = 0, there must exist a homotopy F : In × I → X
such that F0 = f, F1(I

n) = {x0} and Ft : (In, In−1, Jn−1) → (X,A, x0)
for all t ∈ I. Define a new homotopy G : In × I → X by setting

G ((t1, ..., tn−1, tn), t) = F ((t1, ..., tn−1, 0), 2tn) , if 0 ≤ 2tn ≤ t,
F
(

(t1, ..., tn−1,
2tn−t
2−t

), t
)

, if t ≤ 2tn ≤ 2.

Then G0 = f , G1(I
n) ⊂ A and Gt(∂In) = {x0} for all t ∈ I. Now G1

belongs to some homotopy class β of πn(A, x0), and hence i∗(β) = α.

Proof of v) First, let’s assume that n > 1. Let f : (In, In−1, Jn−1) → (X,A, x0)
belong to the homotopy class α - then since δ(α) = 0 there is a homo-
topy G : In−1 × I → A such that G0 = f |In−1 , G1(I

n−1) = {x0} and
Gt(∂In−1) = {x0} for all t ∈ I. We will define a homotopy

H : ∂In × I → A

by setting

H(x, t) =

{

G(x, t) if x ∈ In−1

x0 if x ∈ Jn−1.

Since H0 = f |∂In , it follows from Corollary ( 3.3.15) that H has an
extension F : In × I → X such that F0 = f . Since F1(∂In) =
H1(∂In) = x0, F1 belongs to some homotopy class β ∈ πn(X, x0),
and since Ft : (In, In−1, Jn−1) → (X,A, x0) for all t ∈ I we get that
j∗(β) = α.
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In the case n = 1, α is represented by a path f : I → X such that
f(0) ∈ A and f(1) = x0. Here the condition δ(α) = 0 means that f(0)
is contained in the same path component of A as x0. Thus there is a
path γ : I → A such that γ(0) = x0 and γ(1) = f(0). We may now
define a homotopy F : I × I → X by setting

F (s, t) =

{

γ ((1 − t) + (1 + t)s) when 0 ≤ s ≤ t
1+t

f ((1 + t)s − t) when t
1+t

≤ s ≤ 1

such that F0 = f , Ft(0) ∈ γ(I) ⊂ A, Ft(1) = f(1) = x0 for all t ∈ I and
F1(0) = γ(0) = x0. Then F1 belongs to a homotopy class β ∈ π1(X, x0)
and the homotopy F implies that j∗(β) = α.

Proof of vi) Let’s first assume that n > 1. Let f : (In−1, ∂In−1) → (A, x0) belong
to the homotopy class α; then from the assumption i∗(α) = 0 we know
that there must exist a homotopy F : In−1 × I → X such that F0 = f ,
F1(I

n−1) = {x0} and Ft(∂In−1) = {x0} for all t ∈ I. Define a mapping
g : In → X by setting

g(t1, ..., tn−1, tn) = F ((t1, ..., tn−1), tn) ,

then g : (In, In−1, Jn−1) → (X,A, x0) belongs to some homotopy class
β ∈ πn(X,A, x0), and since g|In−1 = f , we get δ(β) = α.

Now consider the case where n = 1; then α is a path component of
A. The assumption i∗(α) = 0 means that α is contained in the path
component of X containing x0. Let f : I → X be the constant path
f(t) = x0. This path represents a homotopy class β ∈ π1(X,A, x0),
and since f(0) ∈ α, we get δ(β) = α.

3.3 Adjunction spaces and the method of ad-

joining cells

CW-complexes may be constructed through a method referred to as adjoin-
ing cells. Before defining what a CW-complex is we will take a closer look
at the method we will use to build them. First of all we will define what an
adjunction space is.
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Let X and Y be topological spaces, and let A be a closed subset of X.
Let f : A → Y be a continuous map. Denote by W the topological sum
X + Y - that is, W is the disjoint union of X and Y topologized such that a
subset V ⊂ W is open if and only if V ∩ X is open in X and V ∩ Y is open
in Y .

We will define a relation ∼ on W in the following way: If u and v are two
elements of W , then u ∼ v if and only if at least one of the following four
equations makes sense and holds:

u = v, f(u) = v, u = f(v), f(u) = f(v).

It is clear that ∼ is an equivalence relation.
Hence, by identifying the elements which are equivalent to each other, we

”glue” the spaces X and Y together ”along” the closed subset A.

Definition 3.3.1 (Adjunction space). The quotient space Z = W/ ∼ of
the space W over the equivalence relation ∼ is the adjunction space obtained
by adjoining X to Y by means of the given map f : A → Y .

Consider the canonical projection

p : W → Z

Since p coinduces the topology on Z, it is of course continuous. Further-
more, we have:

Proposition 3.3.2. The restriction

i = p|Y : Y → Z

is an embedding.

Proof. Since p is the restriction of a continuous map it is continuous. Assume
that u, v ∈ Y such that p(u) = p(v), or in other words, u ∼ v. Now, because
u and v are elements of Y , the first of the four equations is the only one
making sense and hence u = v. Now we know that i is injective, and it
remains to show that it is a closed map.

Let C be a closed subset of Y . Now because p is an identification map,
p(C) is closed in Z if and only if D = p−1(p(C)) is closed in W . From the
definition of ∼ we get that D = f−1(C) ∪ C. Since C is closed in Y and f
is continuous, we have that f−1(C) = D ∩ X is closed in A and hence in X,
and C = D ∩ Y was closed in Y , so D is closed in W . Hence i is a closed
map.
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If we let C = Y in the proof above we get the following result:

Corollary 3.3.3. The image p(Y ) is a closed subspace of the adjunction
space Z.

From now on we may thus identify Y with p(Y ) and view Y as a closed
subspace of the adjunction space Z.

Proposition 3.3.4. The restriction

j = p|(X \ A) : (X \ A) → Z

is an embedding.

Proof. The injectivity part is proved as in Proposition ( 3.3.2), and since p
is continuous then so is j. We proceed to show that j is an open map.

Let U be an open subset of X \ A. Again because p is an identification
map, p(U) is open in Z if and only if V = p−1(p(U)) is open in W . By the
definition of ∼ we get that U = V and since X \ A is open in W we have
that V is also open in W . Hence j is an open map.

By setting U = X \ A in the proof above we obtain:

Corollary 3.3.5. The image p(X \A) is an open subspace of the adjunction
space Z.

We may now identify X \A with its image under p and view X \A as an
open subspace of the adjunction space Z.

It is also obvious that p(Y ) and p(X \ A) are disjoint and hence

Proposition 3.3.6. Z = p(Y ) ∪ p(X \ A)

We may thus consider Z to be the disjoint union of Y and X \A glued to-
gether by a topology defined using the mapping f . Next we will see that the
separation properties T1 and normality are conserved in adjunction spaces.

Proposition 3.3.7. Assuming that the spaces X and Y are

i) T1,

ii) normal,

then so is the adjunction space Z.
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Proof. i) Let z ∈ Z. If z ∈ Y then {z} is closed in Y since Y is T1. Since
Y is closed in Z, then {z} is closed also in Z.

If z /∈ Y then p−1(z) is one single point in X \ A and it is closed in X
since X is T1. But X is closed in W and so p−1(z) is closed in W , and
so {z} is closed in Z since p is an identification map.

ii) Let F1 and F2 be two disjoint, closed subsets of Z. Then F1 ∩ Y and
F2 ∩ Y are disjoint closed subsets of Y and so since Y is normal, there
exist disjoint open neighborhoods U1 and U2 of F1 ∩ Y and F2 ∩ Y in
Y , such that U1 ∩ U2 = ∅. Since Y is closed in Z, these are also their
closures in Z.

Now define

K1 = F1 ∪ U1, K2 = F2 ∪ U2,

which are disjoint closed subsets of Z. Then the sets

J1 = p−1(K1) ∩ X, J2 = p−1(K2) ∩ X

are disjoint and closed in X. Because X is normal, there are disjoint
open neighborhoods V1 and V2 of J1 and J2.

Consider the subsets

G1 = p(V1 \ A) ∪ U1, G2 = p(V2 \ A) ∪ U2

of Z. We wish to show that F1 ⊂ G1.

Let z ∈ F1. If z ∈ Y then z ∈ U1 ⊂ G1. If z /∈ Y then there is a unique
point x ∈ X \A such that z = p(x), and since z ∈ F1 ⊂ K1 we get that
x ∈ J1 ⊂ V1 and so x ∈ V1 \ A and hence z ∈ G1. Similarly, F2 ⊂ G2.

Furthermore, we want to show that G1 ∩G2 = ∅. Now, the sets U1 and
U2 were disjoint by definition. Because V1 ∩ V2 = ∅ and p|(X \ A) →
(Z \ Y ) is a homeomorphism, we get that p(V1 \ A) ∩ p(V2 \ A) = ∅.
Since U1 ⊂ Y and p(V2\A) ⊂ Z \Y we get U1∩p(V2\A) = ∅. Similarly
U2 ∩ p(V1 \ A) = ∅, and hence we get that G1 ∩ G2 = ∅.

It remains to show that G1 and G2 are open in Z. Since p is an
identification map, this is equivalent to showing that p−1(Gi) is open
in W for i = 1, 2.

On one hand,
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p−1(G1) ∩ Y = G1 ∩ Y = U1

is open in Y ; on the other hand, we get

p−1(G1) ∩ X = (V1 \ A) ∪ f−1(U1)

since p−1(U1)∩X = f−1(U1). Because f−1(U1) is open in A there exists
an open set H1 in X such that f−1(U1) = A∩H1. Since p−1(U1)∩X ⊂
J1 ⊂ V1, we have

f−1(U1) = A ∩ H1 ∩ V1,

and so

p−1(G1) ∩ X = (V1 \ A) ∪ (A ∩ H1 ∩ V1) = (V1 \ A) ∪ (H1 ∩ V1).

The sets V1 \ A and H1 ∩ V1 are open in X, and hence p−1(G1) ∩ X is
open in X. Hence G1 is open in Z. Similarly, G2 is open in Z. Hence
Z is normal.

Now that we know a little bit about adjunction spaces we can look at
what it means to form a new space from an original one by adjoining cells.
In this context, an n-cell of the space X will be a subset en

j ⊂ X for which

there exists a surjective mapping fj : B
n
→ en

j such that fj|B
n is a homeo-

morphism.

Definition 3.3.8 (Adjoining cells). Let A be a closed subset of a topolog-
ical space X. The set X is obtained from A by adding n-cells, where n ≥ 0,
if there is a set of cells {en

j : j ∈ J} such that

i) For each j ∈ J , en
j ⊂ X

ii) If ėn
j = en

j ∩ A then (en
j \ ėn

j ) ∩ (en
j′ \ ėn

j′) = ∅ for j 6= j′.

iii) X = A ∪
⋃

j∈J en
j

iv) X has a topology coherent with {A, en
j : j ∈ J}, in other words, the

topology of X is coinduced by the inclusions of the sets A and en
j .
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v) For each j ∈ J there is a map

fj : (B
n
, Sn−1) → (en

j , ė
n
j )

such that fj(B
n
) = en

j , fj maps B
n
\Sn−1 homeomorphically onto en

j \ėn
j

and en
j has the topology coinduced by fj and the inclusion map ėn

j →֒ en
j .

The map fj is then called a characteristic map for en
j and fj|Sn−1 :

Sn−1 → A is called an attaching map for en
j .

The definition above is most suitable when looking for a CW-complex
representation of a given space. Alternatively, one may start in the other
end with a given space A and then attach cells to get a space X with certain
properties. Because, if we have a space A and an indexed collection of maps
{gj : Sn−1 → A : j ∈ J} then we may define a map g : ˙⋃

j∈JSn−1 → A
and so there is a space X defined as the adjunction space of the topological
sum A∪̇ ˙⋃

j∈JEn
j where En

j = B
n

for all j ∈ J , by the mapping g. Then the

composition of the inclusion map (En
j , Sn−1

j ) →֒ (A∪̇ ˙⋃
j∈JEn

j , A∪̇ ˙⋃
j∈JSn−1

j )
and the projection onto (X,A) is a characteristic map fj : (En

j , Sn
j ) → (X,A)

for an n-cell en
j = fj(E

n
j ).

Proposition 3.3.9. If A is T1/normal and X is obtained from A by adjoining
n-cells for some n ∈ N0, then X is T1/normal.

Proof. Since B
n

is T1 and normal, so is the disjoint union ˙⋃
i∈IB

n

i . Hence it
follows from Proposition ( 3.3.7) that if A is T1/normal, then so is X.

Definition 3.3.10 (Strong deformation retract). Let X be a topological
space. The subspace A ⊂ X is a strong deformation retract of X if there
is a retraction r : X → A such that if i : A →֒ X then IdX ≃ ir rel A. If
F : IdX ≃ ir rel A then F is a strong deformation retraction of X to A.

Example 3.3.11. For n ∈ N, the set B
n
×0∪Sn−1×I is a strong deformation

retract of B
n
× I.

Lemma 3.3.12. If X is obtained from A by adding n-cells then X×0∪A×I
is a strong deformation retract of X × I.

Proof. For each n-cell en
j of X \ A, let fj : (B

n
, Sn−1) → (en

j , ė
n
j ) be a char-

acteristic map. Let D : (B
n
× I) × I → B

n
× I be a strong deformation

retraction of B
n
× I to B

n
× 0 ∪ Sn−1 × I. Then there is a map

Dj : (en
j × I) × I → X × I
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defined by

Dj((fj(z), t), t′) = (fj × IdI)(D(z, t, t′)) when z ∈ B
n
; t, t′ ∈ I.

Now there is a map

D′ : (X × I) × I → X × I

such that D′|(en
j ×I)×I = Dj, and D′(a, t, t′) = (a, t) for a ∈ A; t, t′ ∈ I,

since if x ∈ A ∩ en
j then x ∈ ėn

j and so Dj(x, t, t′) = (fj × IdI)(D(z, t, t′)) =
(fj × IdI)(z, t) = (x, t) since z ∈ f−1(x) ∈ Sn−1. Finally D′ is a strong
deformation retraction of X × I to X × 0 ∪ A × I because D is a strong
deformation retraction.

(Clearly, D′
0|A×I = IdA×I , and if fj(z) ∈ en

j , then D′
0(fj(z), t) = Dj(fj(z), t, 0) =

(fj × IdI)(D(z, t, 0))
D strong def retr

= (fj × IdI)(z, t) = (fj(z), t). On the other
hand, D′

1 defines a retraction r : X × I → X × 0∪A× I since D′
1(fj(z), t) =

Dj(fj(z), t, 1) = (fj × IdI)(D(z, t, 1)) and since D is a strong deformation
retraction, D(z, t, 1) ∈ B

n
× 0 ∪ Sn−1 × I; thus (fj × IdI)(D(z, t, 1)) ∈

X × 0 ∪ A × I, and so D′
1 defines a retraction r. Hence D′ is a strong

deformation retraction.)

Definition 3.3.13 (Cofibration). A pair of topological spaces (X,A) (that
is, A is a subspace of X) has the homotopy extension property with respect to
a space Y if for all mappings f : X → Y and homotopies H : A×I → Y such
that H(a, 0) = f(a) for all a ∈ A, there exists a homotopy F : X × I → Y
such that F |A×I = H and F (x, 0) = f(x) for all x ∈ X.

The inclusion i : A →֒ X is a cofibration if the pair (X,A) has the
homotopy extension property with respect to all spaces Y .

Proposition 3.3.14. If X × 0 ∪ A × I is a strong deformation retract of
X × I then A →֒ X is a cofibration.

Proof. Let Y be some space, and let f : X → Y be a mapping and H :
A× I → Y a homotopy such that H(a, 0) = f(a) for all points a ∈ A. These
now define a new mapping g : X × 0 ∪ A × I → Y , which is continuous by
Lemma ( 1.4.1) since both A × I and X × 0 are closed in X × 0 ∪ A × I. If
r : X × I → X × 0∪A× I is a retraction, then F = g ◦ r : X × I → Y is the
wanted homotopy.

Corollary 3.3.15. Since B
n
× 0 ∪ Sn−1 × I is a strong deformation retract

of B
n
× I, it follows that the inclusion Sn−1 →֒ B

n
is a cofibration.

Similarly, the inclusion ∂In →֒ In is a cofibration as well.
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Corollary 3.3.16. If X is obtained from A by adjoining n-cells, then A →֒ X
is a cofibration.

3.4 CW-complexes

In this section we define CW-complexes and investigate their topological
properties.

References: [8], [4]

Definition 3.4.1 (CW-complex). A relative CW-complex consists of a
topological space X, a closed subspace A and a sequence of closed subspaces
(X,A)k for k ∈ N0 such that

i) (X,A)0 is obtained from A by adjoining 0-cells.

ii) for k ≥ 1, (X,A)k is obtained from (X,A)k−1 by adjoining k-cells.

iii) X =
⋃

k∈N0
(X,A)k.

iv) X has a topology coherent with {(X,A)k : k ∈ N0}.

The set (X,A)k is called the k-skeleton of X relative to A. If X = (X,A)n

for some n ∈ N0, then we write dimension (X − A) ≤ n.

An absolute CW-complex is a CW-complex (X, ∅).

Remark 3.4.2. Although in the definition we only demand that the topology
of a relative CW-complex (X,A) is coherent with the family of k-skeletons
(X,A)k of (X,A), it is actually true that the topology is coherent with the set
{A, en

j : en
j is a cell in (X,A)n}:

Assume that U ⊂ X is open in (X,A). Then U ∩A is open in A. Assume
n ∈ N0, then U ∩ (X,A)n is open in (X,A)n and hence U ∩ en

j is open in en
j

for each n-cell en
j in (X,A)n.

Conversely, assume that U ⊂ X such that U ∩A is open in A and U ∩ en
j

is open in each n-cell en
j from (X,A)n for each n ∈ N0. Then U ∩ (X,A)0

is open in (X,A)0 and by induction U ∩ (X,A)n is open in (X,A)n for each
n ∈ N, hence U is open in (X,A).

Example 3.4.3. A simplicial polytope is an absolute CW-complex.
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The following observation is easy to verify:

Remark 3.4.4. Let n ∈ N0. If X is an absolute CW-complex and the
topological space Y is obtained by adjoining n-cells via mappings Sn−1 → X
whose images lie in Xn−1, then Y is a CW-complex whose k-skeletons equals
Xk for k < n and Xk ∪ the new n-cells for k ≥ n.

Proposition 3.4.5. A compact subset of a relative CW-complex (X,A) is
contained in the union of A and finitely many cells.

Proof. Let C be a compact subspace of the relative CW-complex (X,A).
Assume that C is not contained in the union of A and any finite colletion of
cells of (X,A); then we can find a sequence of points (xi) in C such that the
xi lie in distinct cells en

i . Denote S = {xi : i ∈ N}

Now the set S is closed in (X,A): S ∩ e0
j is closed in e0

j for each 0-cell
e0

j and so S ∩ (X,A)0 is closed in (X,A)0. Furthermore, if S ∩ (X,A)n−1 is
closed in (X,A)n−1 for some n ≥ 1, then S ∩ en

j contains at most one point
which was not contained in S ∩ (X,A)n−1 for each n-cell en

j ; hence S ∩ en
j is

closed in en
j . It follows that S ∩ (X,A)n is closed in (X,A)n for all n ∈ N0,

and hence S is closed in (X,A). In particular, S is closed in the compact set
C, and so S is compact.

Similarly, any subset of S is closed, and hence S is discrete. But a discrete
infinite set cannot be compact; hence we get a contradiction. Thus C is
contained in the union of A and finitely many cells of (X,A).

Corollary 3.4.6. • A compact subset of an absolute CW-complex X is
contained in a finite union of cells of X.

• A compact subset of a relative CW-complex (X,A) is contained in
(X,A)k for some k ∈ N0.

• A compact subset of an absolute CW-complex X is contained in Xk for
some k ∈ N0.

Lemma 3.4.7. If f : X → Y is an identification map and C is a locally
compact Hausdorff space, then f × Id : X × C → Y × C is an identification
map.

Proof. We need to show that if U ⊂ Y × C is a subset such that V =
(f × Id)−1U is open, then U is open. Let (y, c) ∈ U and choose (x, c) ∈ V
such that f(x) = y. Now there exists a neighborhood B of c such that
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B is compact and {x} × B ⊂ V . Let W = {z ∈ X : {z} × B ⊂ V } =
{z ∈ X : {f(z)} × B ⊂ U}. Now V is open and B and each {z} are
compact, so for each z there exist open sets Uz of Y and V ′

z of C such
that {z} × B ⊂ Uz × V ′

z ⊂ V . Hence W = ∪{Uz : z ∈ W} is open, and
f−1(f(W )) = W - thus f(W ) is open, since f is an identification map. Hence
U contains the open neighborhood B × f(W ) of (y, c); thus U is open.

Proposition 3.4.8. If (X,A) is a relative CW-complex then a function H :
(X,A) × I → Y is continuous if and only if it is continuous on A × I and
on en

j × I for each cell en
j of (X,A).

Proof. The topology of the CW-complex (X,A) is coherent with {A, en
j },

as we already know. That is, we may define an identification map p :
˙⋃

j∈Jen
j ∪̇A → (X,A) from the disjoint union of A and the cells of (X,A) onto

(X,A). By Lemma ( 3.4.7) the mapping p×I : ˙⋃
j∈Jen

j ×I∪̇A×I → (X,A)×I
is also a quotient map. Hence any mapping H : (X,A) × I → Y for
some space Y is continuous if and only if the corresponding map H ′ :
˙⋃

j∈Jen
j × I∪̇A × I → Y is continuous - that is, if H is continuous on A × I

and on en
j × I for each cell en

j of (X,A).

Proposition 3.4.9. If (X,A) is a relative CW-complex then the inclusion
map A →֒ X is a cofibration.

Proof. Let f : (X × 0) ∪ (A × I) → Y be a mapping - we now need to show
that f can be extended to X × I. By Corollary ( 3.3.16) there exists an
extension f0 : X × 0 ∪ (X,A)0 × I → Y . Similarly, if we have managed to
extend f to a mapping fn−1 : X × 0 ∪ (X,A)n−1 × I → Y then, again by
Corollary ( 3.3.16) there exists an extension fn : X × 0 ∪ (X,A)n × I → Y .

Now define F : X×I → Y by setting F (x, t) = fn(x, t) where x ∈ (X,A)n.
Now since F is continuous on (X,A)n × I for all n ∈ N0, it is continuous on
A× I and on en

j × I for every cell en
j of (X,A); hence by Proposition ( 3.4.8)

it is continuous on (X,A) × I.

Lemma 3.4.10. For a mapping α : (B
n
, Sn−1, s0) → (X,A, x0) we have that

[α] = 0 in πn(X,A, x0) if and only if α is homotopic relative to Sn−1 to some
map B

n
→ A.

Proof. ”⇒” Assume that [α] = 0 in πn(X,A, x0). Then there is a homotopy

H : (B
n
, Sn−1, s0) × I → (X,A, x0)

from α to ǫx0
: B

n
→ {x0} →֒ X.
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We define a function H ′ : (B
n
, Sn−1, s0) × I → (X,A, x0) by setting

H ′(z, t) =

{

H( z

1− t
2

, t), 0 ≤ ‖z‖ ≤ 1 − t
2

H( z
‖z‖

, 2 − 2‖z‖) 1 − t
2
≤ ‖z‖ ≤ 1

Clearly H ′ is continuous, since when ‖z‖ = 1− t
2
, then H( z

‖z‖
, 2−2‖z‖) =

H( z

1− t
2

, 2 − 2(1 − t
2
)) = H( z

1− t
2

, t). Note also that

H ′(z, 0) = H(z, 0) = α(z) ∀ z ∈ B
n
,

H ′(z, 1) =

{

H(2z, 1) = x0 ∈ A, ‖z‖ ≤ 1
2

H( z
‖z‖

, 2 − 2‖z‖) ∈ A, ‖z‖ ≥ 1
2

because z
‖z‖

∈ Sn−1,

H ′(z, 0) = α(z) ∈ A if z ∈ Sn−1,
H ′(z, t) = H( z

‖z‖
, 2 − 2‖z‖) = H(z, 0) = α(z) if z ∈ Sn−1 and t 6= 0 because ‖z‖ = 1.

Thus we see that H ′ is a homotopy rel Sn−1 from α to some map B
n
→ A,

just like we wanted.

”⇐” Now we assume that there is mapping α′ : (B
n
, Sn−1, s0) → (X,A, x0)

such that α ≃ α′ rel Sn−1 and α′(B
n
) ⊂ A. Then [α] = [α′] in πn(X,A, x0).

A homotopy H : (B
n
, Sn−1, s0)×I → (X,A, x0) from α′ to the constant map

ǫx0
is defined by

H(z, t) = α′ ((1 − t)z + ts0) ,

and so [α] = [α′] = 0.

Definition 3.4.11 (n-connectedness). Let n ∈ N0. A topological space X
is n-connected if every mapping

f : Sk → X,

where k ≤ n, can be extended to a mapping B
k+1

→ X.

A pair (X,A) is n-connected if every mapping

f : (B
k
, Sk−1) → (X,A)

is homotopic rel Sk−1 to some mapping B
k
→ A for any k such that

0 ≤ k ≤ n.
In the case n = 0 the pair (B

0
, S−1) consists of a single point and the

empty set, and so 0-connectedness means that any point in X can be con-
nected by a path to some point in A.
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Note that 0-connectedness in the case of a single space X = (X, ∅) is
equivalent to path-connctedness, and in the case of a pair (X,A) of spaces
means that every path component of X intersects with A.

Lemma 3.4.12. A topological space X is n-connected for some n ∈ N if
and only if it is path connected and πk(X, x0) = 0 for all x0 ∈ X and for all
k = 1, ..., n.

Proof. ”⇒” Assume that the topological space X is n-connected for some
n ∈ N. Then any mapping f : S0 = {−1, 1} → X can be extended to

a mapping B
1

= [−1, 1] → X - in other words, X is path connected. In
addition to that, any map f : (Sk, p0) → (X, x0) can be extended to a map

g : B
k+1

→ X when 1 ≤ k ≤ n. Now define a homotopy

h : Sk × I → X

by setting

h(x, t) = g((1 − t)x + tp0)

where p0 is some point in Sn. Then h is a homotopy from f to cx0
, and

h(p0, t) = g(p0) for all t ∈ I and hence h is a homotopy rel p0.
It follows that [f ] = [cx0

] = 0 for all maps f : (Sk, p0) → (X, x0) and
hence πk(X, x0) = 0 for all k = 1, ..., n.

”⇐” Assume that the topological space X is path connected and that
πk(X, x0) = 0 for all k = 1, ..., n.

Since X is path-connected any map f : S0 = {−1, 1} → X can be

extended to a mapping [−1, 1] = B
1
→ X.

Now assume 0 < k ≤ n, and let f : Sk → X. Since πk(X, x0) = 0 for all
x0 ∈ X, there is a homotopy h : Sk × I → X such that h(x, 0) = f(x) for all

x ∈ Sn and h(x, 1) = cx0
where cx0

is a constant map. Now, since Sk →֒ B
k+1

is a cofibration there exists an extension F of the mapping H : Sk×I∪B
k+1

×1

given by H(x, 1) = x0 when x ∈ B
k+1

, H(x, t) = h(x, t) when (x, t) ∈ Sk ×I.

Now F0 is an extension of f over B
k+1

, and hence X is n-connected.

Lemma 3.4.13. A pair of spaces (X,A) is n-connected if and only if the
following holds: Every path component of X intersects A and for every point
a ∈ A and every 1 ≤ k ≤ n,

πk(X,A, a) = 0.
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Proof. ”⇒” Assume that the topological pair (X,A) is n-connected, and let

x ∈ X. Now the pair (B
0
, S−1) consist in fact of a singleton set {1} and the

empty set, which we may treat as the singleton set only.
Now the mapping f : {1} → X defined by 1 7→ x for some x ∈ X is homo-

topic to some mapping g : {1} → X such that f(1) = a ∈ A; hence there is
a path in X from x to a and hence the path component of x in X intersects A.

Furthermore, let 0 ≤ k ≤ n. Then by the definition, any map

f : (B
k
, Sk−1, s0) → (X,A, a)

is homotopic rel Sk−1 to some mapping g : (B
k
, Sk−1) → (X,A) such

that g(B
k
) ⊂ A, and thus by Lemma ( 3.4.10), [f ] = 0 in πk(X,A, a). Hence

πk(X,A, a) = 0.

”⇐” Now assume that every path component intersects with A and that

πk(X,A, x0) = 0 for 1 ≤ k ≤ n. Then, given a map f : (B
k
, Sk−1, s0) →

(X,A, x0) where 1 ≤ k ≤ n, this map is homotopic rel Sk−1 to a map B
k
→ A

by Lemma ( 3.4.10). Furthermore, if f : (B
0
, S−1) = ({1}, ∅) → (X,A); by

the assumption there is a path γ : I → X from f(1) to some point a ∈ A;
hence the map H : {1}×I → X defined by H(1, t) = γ(t) defines a homotopy

from f to a map B
0
→ A. Hence the pair (X,A) is n-connected.

Example 3.4.14. For all n ∈ N the pair (B
n
, Sn−1) is n − 1-connected.

Proof. See [8].

Lemma 3.4.15. Let X be obtained from A by adding n-cells and let (Y,B)
be a pair of spaces such that

• πn(Y,B, b) = 0 for all b ∈ B if n ≥ 1;

• every point of Y can be joined to B by a path if n = 0.

Then any map (X,A) → (Y,B) is homotopic rel A to some map X → B.

Proof. n = 0
Let f : (X,A) → (Y,B) be a map, and let the 0-cells be points e0

j , where
j ∈ J . Now for each yj = f(e0

j) there is a point bj ∈ B such that yj and bj

may be connected with a path αj : I → Y . Now define H : X × I → Y by
setting
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H(a, t) = f(a) ∀ t ∈ I, a ∈ A
H(e0

j , t) = αj(t) ∀ t ∈ I, j ∈ J

Since X is the topological sum of A and the discrete space {e0
j : j ∈ J},

H is continuous, and H1(X) ⊂ B. Hence H is the wanted homotopy.

n > 1
Let the characteristic map of each n-cell en

j be fj : (B
n

j , Sn−1) → (en
j , ė

n
j ), and

let f : (X,A) → (Y,B) be any map. For each n-cell en
j there is a well-defined

map

f ◦ fj : (B
n
, Sn−1, en+1) → (Y,B, f(fj(en+1)))

and since πn(Y,B, f(fj(en+1))) = 0 we have [f ◦fj] = 0 and so by Lemma
( 3.4.10) f ◦ fj is homotopic rel Sn−1 to some map B

n
→ B. Denote this

homotopy Hj, where Hj
0 = f ◦ fj and Hj

1(B
n
) ⊂ B.

Define H : X × I → Y by setting

H(a, t) = a ∀ a ∈ A, t ∈ I

H(fj(x), t) = Hj(x, t) ∀ fj(x) ∈ en
j where x ∈ B

n
.

The function H is well-defined since Hj was a homotopy rel Sn−1 for all
j ∈ J , and H is continuous on A × I and on en

j × I for all j ∈ J . It follows
from Proposition ( 3.4.8) that H is continuous, and hence H is the wanted
homotopy.

Lemma 3.4.16. Let (X,A) be a relative CW-complex with dimension(X −
A) ≤ n and let (Y,B) be n-connected. Then any map from (X,A) to (Y,B)
is homotopic rel A to some map from X to B.

Proof. We will prove this lemma by induction. First assume that n = 0.
Since X is obtained from A by adding 0-cells, and since the 0-connectedness
of (Y,B) means that every point of Y may be joined by a path to some point
of B, we may apply Lemma ( 3.4.15) to get that any map f : (X,A) → (Y,B)
is homotopic rel A to some map X → B.

Now assume that the claim holds for all n < m, and assume that dimension(X−
A) ≤ m and that (Y,B) is m-connected. Let

f : (X,A) → (Y,B)

be any mapping. Now, by the induction assumption, the restriction
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f | :
(

(X,A)m−1, A
)

→ (Y,B)

is homotopic rel A to some mapping (X,A)m−1 → B, and by Proposition
( 3.4.9) this homotopy has an extension H : X × I → Y such that H0 = f ,
while H1 : (X, (X,A)m−1) → (Y,B). But now by Lemma ( 3.4.15), since X
is obtained from (X,A)m−1 by adding m-cells, the mapping H1 is homotopic
to some map g where g(X) ⊂ B - that is, f ≃ H1 ≃ g and g maps X into B.

Corollary 3.4.17. Let (X,A) be a relative CW-complex and let (Y,B) be
n-connected for all n ∈ N. Then any map (X,A) → (Y,B) is homotopic rel
A to a map from X to B.

Proof. Let f : (X,A) → (Y,B). By Lemma ( 3.4.16) there exists a homotopy
h0 : (X,A)0× I → Y relative to A such that h0

0 = f |(X,A)0 and h0
1((X,A)0) ⊂

B since dimension((X,A)0−A) = 0. But because (X,A)0 →֒ X is a cofibra-
tion by Proposition ( 3.4.9) there exists an extension H0 : (X,A)×I → (Y,B)
of h0 such that H0(x, 0) = f(x) for all x ∈ X. Now H0 is a homotopy relative
to A.

Now assume that there exist homotopies Hk : (X,A) × I → (Y,B) for
k < n such that

a) Hk−1(x, 1) = Hk(x, 0) for x ∈ X.

b) Hk is a homotopy rel (X,A)k−1.

c) Hk((X,A)k × 1) ⊂ B.

Then considering the map g : ((X,A)n, (X,A)n−1) → (Y,B) where g(x) =
Hn−1(x, 1) for all x ∈ (X,A)n there exists, according to Lemma ( 3.4.16), a
homotopy hn : (X,A)n × I → Y relative to (X,A)n−1 such that hn

0 = g and
hn

1 ((X,A)n) ⊂ B. But by Proposition ( 3.4.9) (X,A)n →֒ X is a cofibration
and hence there exists an extension Hn : (X,A)× I → (Y,B) of hn such that
Hn(x, 0) = Hn−1(x, 1). Now Hn is a homotopy relative to (X,A)n−1.

Hence we get a sequence of homotopies Hk : (X,A) × I → (Y,B) such
that

i) H0(x, 0) = f(x) for x ∈ X.

ii) Hk(x, 1) = Hk+1(x, 0) for x ∈ X.
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iii) Hk is a homotopy rel (X,A)k−1.

iv) Hk((X,A)k × 1) ⊂ B.

Now we may define a homotopy H : (X,A) × I → (Y,B) by setting

H(x, t) = Hk−1

(

x,
t − (1 − 1

k
)

( 1
k
− 1

k+1
)

)

1 −
1

k
≤ t ≤ 1 −

1

k + 1

H(x, 1) = Hk(x, 1) x ∈ (X,A)k

Now using Lemma ( 1.4.4) one sees that H is continuous on (X,A)n × I
for all n ∈ N0 and hence it is continuous on (X,A) × I. Furthermore,
H(x, 0) = H0(x, 0) = f(x) for all x ∈ X while H(x, 1) ⊂ B for all x ∈ X.

Lemma 3.4.18. If the space X is obtained from A by adjoining n-cells, then
the pair (X,A) is (n − 1)-connected.

Proof. First consider a simpler case: Assume that X is obtained from A by
adjoining the n-cell en to A. We show that the pair (X,A) is n-connected.

Let x0 ∈ Inten. Define a subset Y of X by setting

Y = A ∪ en \ {x0} = X \ {x0},

and let f : (B
k
, Sk−1) → (X,A) be a mapping where 0 ≤ k < n. We

may identify (up to homeomorphism) B
k

with the standard k-simplex ∆k

and Sk−1 with its boundary. Then Y and Inten intersect f(∆k) in open
subsets of f(∆k), hence f−1(Y ) and f−1(Inten) are open subsets of ∆k. By
Lebesgue’s covering theorem we may subdivide ∆k into finitely many smaller
simplices such that each simplex belongs either to f−1(Y ) or to f−1(Inten).
This subdivision corresponds to a finite simplicial complex which we may call
K whose underlying set is the same as that of ∆k, and since the complex is
finite the topology on the corresponding polytope |K| is the same as that on
∆k - hence |K| = ∆k as topological spaces.

Now for each simplex s ∈ K either f(|s|) ⊂ Y or f(|s|) ⊂ Inten.

Let A′ be the subpolytope of |K| containing those simplices s ∈ K such
that f(|s|) ⊂ Y , and let B be the subpolytope containing such simplices
s ∈ K that f(|s|) ⊂ Inten. Then Sk−1 ⊂ A′ and ∆k = A′ ∪ B.
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Denote B′ = B ∩A′ and note that (B,B′) is a relative CW-complex with
dimension(B − B′) ≤ k ≤ n − 1. We consider the restriction

f |(B,B′) : (B,B′) → (Inten, Inten \ {x0}).

The pair (Inten, Inten \ {x0}) is homeomorphic to (Bn, Bn \ {0}), and
thus their homotopy groups are the same as that of (B

n
, Sn−1). By Example

( 3.4.14) (B
n
, Sn−1) is n − 1-connected, and thus by Lemma ( 3.4.16) we have

that f |(B,B′) is homotopic rel B′ to a map B → Inten \ {x0}.

This can be extended to a homotopy rel A′ from f to a mapping f ′ :

B
k
⊂ Y .

Now A is a strong deformation retract of Y (in a similar way that Sn−1

is a strong deformation retract of B
n
\ {0}). It follows that f ′ is homotopic

rel Sk−1 to a mapping f ′′ such that f ′′(B
k
) ⊂ A. But then f ≃ f ′′ rel Sk−1,

and it follows that (X,A) is n − 1-connected.

Now we return to the original question. Let X be obtained from A by

adjoining n-cells (an arbitrary amount of such cells), and let f : (B
k
, Sk−1) →

(X,A) where 0 ≤ k < n. Now since B
k

is compact, its image f(B
k
) is

compact and so by Lemma ( 3.4.5) it is contained in the union of A and

finitely many n-cells - that is, f(B
k
) ⊂ A∪ en

1 ∪ ...∪ en
m. Hence we may write

f : (B
k
, Sk−1) → (X(m), A)

where X(m) is the space obtained by adjoining only the cells en
1 , ..., e

n
m.

But although we adjoin all cells at once we would obtain exactly the same
space by adjoining first en

1 , then en
2 and so on. Denote by X(i) the space

obtained by adjoining cells en
1 ,...,en

i . Now by our previous calculations the
pair (X(m), X(m−1)) is (n− 1)-connected, and so there exists a mapping fm :

B
k
→ X(m−1) such that f ≃ fm rel Sk−1. Similarly we construct f i : B

k
→

X(i−1) for all i = 1, ...,m − 1 (X(0) = A) and thus we obtain f ≃ fm ≃

fm−1 ≃ ... ≃ f 1 where all homotopies are rel Sk−1 and f 1(B
k
) ⊂ A. It

follows from this that (X,A) is n − 1-connected.

Theorem 3.4.19. For any relative CW-complex (X,A) the pair (X, (X,A)n)
is n-connected for all n ∈ N0.

Proof. Let (X,A) be a relative CW-complex, and let n ∈ N0. We will start
the proof of the theorem by proving that for any m > n, the relative CW-
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complex ((X,A)m, (X,A)n) is n-connected by induction on m.

If m = n+1, then ((X,A)m, (X,A)n) is n-connected by Lemma ( 3.4.18).

Now make the inductive assumption that ((X,A)m−1, (X,A)n) is n-connected,

and let f : (B
k
, Sk−1) → ((X,A)m, (X,A)n), where 0 ≤ k ≤ n. Then we may

write

f : (B
k
, Sk−1) →

(

(X,A)m, (X,A)m−1
)

and ((X,A)m, (X,A)m−1) is m − 1-connected by Lemma ( 3.4.18) and
thus it is also n-connected. It follows that there exists a mapping g :

B
k
→ (X,A)m−1 such that f ≃ g rel Sk−1. But then g : (B

k
, Sk−1) →

((X,A)m−1, (X,A)n) and by the inductive assumption ((X,A)m−1, (X,A)n)

is n-connected so there exists a mapping h : B
k
→ (X,A)n such that g ≃ h

rel Sk−1.

It follows that

f ≃ h rel Sk−1

and it follows that ((X,A)m, (X,A)n) is n-connected.

Now let’s return to the original task. Assume that f ′ : (B
k
, Sk−1) →

((X,A), (X,A)n) where 0 ≤ k ≤ n. Now since B
k

is compact, so is f(B
k
)

and thus by Corollary ( 3.4.6) f(B
k
) ⊂ (X,A)m for some m ∈ N0. We may

assume that m > n.

Then we may consider the function f ′ as a function

f ′ : (B
k
, Sk−1) → ((X,A)m, (X,A)n)

and so by the previous comment there exists a mapping g′ : B
k
→ (X,A)n

such that f ′ ≃ g′ rel Sk−1. Hence (X, (X,A)n) is n-connected.

3.5 Weak homotopy equivalence

The notion of weak homotopy equivalence is generally weaker than that of
homotopy equivalence, and may be easier to prove. In this section we will
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show that in the case of a CW complex the two are actually equivalent.

Reference: [8]

Definition 3.5.1 (n-equivalence, weak homotopy equivalence). Let
X and Y be topological spaces and let n ∈ N. A mapping f : X → Y is an n-
equivalence if f induces a 1− 1 correspondence between the path components
of X and Y and if for each x ∈ X the induced map

f∗ : πq(X, x) → πq(Y, f(x))

is an isomorphism when 0 < q < n and an epimorphism when q = n.
A mapping f : X → Y is a weak homotopy equivalence or an ∞-

equivalence if it is an n-equivalence for all n ≥ 1.

A weak homotopy equivalence is not generally a homotopy equivalence:

Example 3.5.2. Let A1 = N0 and A2 = {0, 1
n

: n ∈ N} with their subspace
topologies from R. Now A2 is not a CW complex because it does not have the
discrete topology.

Let f : A1 → A2 be defined by f(0) = 0, f(n) = 1
n
. Now f is contin-

uous since A1 is discrete, and f∗ : π0(A1) → π0(A2) is clearly a bijection.
Furthermore, if f : Sk → Ai, i = 1, 2 is continuous then f is the constant
map since its image must be connected. Hence πk(A1) = 0 = πk(A2) for all
k ∈ N. It follows that f∗ is an isomorphism for all k ∈ N and hence f is a
weak homotopy equivalence. However, f is not a homotopy equivalence:

Assume that g is a homotopy inverse of f ; then if a ∈ A1 and H :
A1×I → A1 such that H : (g ◦f) ≃ idA1

; then Ht(a) : I → A1 defines a path
in A1 from (g ◦ f)(a) to a and since A1 is totally disconnected it follows that
(g ◦ f)(a) = a. Hence g ◦ f = IdA1

. Similarly f ◦ g = IdA2
, and so f is a

homeomorphism. But A1 and A2 are not homeomorphic since A2 is compact
and A1 is not.

Thus f is a weak homotopy equivalence, but not a homotopy equivalence.
�

In order to prove the following lemma we need the notion of a mapping
cylinder Zf of a function f : X → Y . We define Zf as the quotient space of
the topological sum of X × I and Y by identifying every point (x, 1) ∈ X × I
with the corresponding point f(x) ∈ Y .
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Figure 3.1: Top: A piece of the space A1. Bottom: The space A2.

X {0}x

Y

X

f(x)

Figure 3.2: The mapping cylinder Zf of a mapping f : X → Y .
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In other words Zf consists of equivalence classes [x, t] = {(x, t)} if t ∈
[0, 1[, [x, 1] = [f(x)] = [y] = {y, (x, 1) : f(x) = y} if y ∈ f(X) and [y] if
y ∈ Y \ f(X). Then there is an imbedding i : X → Zf defined by x 7→ [x, 0]
and an imbedding j : Y → Zf defined by y 7→ [y]. By means of these
imbeddings X and Y may be viewed as subspaces of Zf .

Furthermore, we may define a retraction r : Zf → Y by setting r([x, t]) =
[f(x)] for all x ∈ X and r([y]) = [y] for all y ∈ Y .

Now it is clear that r ◦ j : Y →֒ Zf → Y = IdY , and furthermore the
function H : Zf × I → Zf defined by

H([x, t], s) = [x, t + s(1 − t)], ∀ x ∈ X and ∀ t, s ∈ I
H([y], s) = [y], ∀ y ∈ Y and ∀ s ∈ I.

defines a homotopy H : IdZf
≃ j ◦ r, since H0([x, t]) = [x, t] and

H1([x, t]) = [x, 1] = [f(x)]. Hence r is a homotopy equivalence.

Naturally, the properties of the mapping cylinder Zf depend on the prop-
erties of the mapping f , and in particular:

Proposition 3.5.3. If the mapping f is an n-equivalence, then the pair
(Zf , X) is n-connected.

Proof. Let f : X → Y be a mapping, and let Zf be the mapping cylinder
of f . Then f = r ◦ i where i and r were defined above, and where r is a
homotopy equivalence. Hence f is an n-equivalence if and only if i : X →֒ Zf

is an n-equivalence. Now, if f is an n-equivalence then i is as well, so consider
the exact homotopy sequence of the pair (Zf , X):

... → πn(X, x0)
i∗→ πn(Zf , x0)

j∗
→ πn(Zf , X, x0)

δ
→ πn−1(X, x0)

i∗→ πn−1(Zf , x0) → ...

Now Im(δ) = Ker(i∗) = 0, and since i∗ is surjective, Ker(δ) = Im(j∗) =
Im(j∗ ◦ i∗) = 0 by the exactness of the sequence; hence δ is injective and
so it follows that πn(Zf , X, x0) = 0. Similarly πk(Zf , X, x0) = 0 whenever
1 ≤ k ≤ n.

Furthermore, since f induces a 1-1 correspondence between the path com-
ponents of X and Y then every point of Zf can be joined to some point of
X by a path. It follows that (Zf , X) is n-connected.

Lemma 3.5.4. Let f : X → Y be an n-equivalence (n finite or infinite)
and let (P,Q) be a relative CW-complex with dimension(P −Q) ≤ n. Given
maps

82



g : Q → X, h : P → Y

such that h|Q = f ◦ g, there exists a map

g′ : P → X

such that g′|Q = g and f ◦ g′ ≃ h rel Q.

Proof. Denote by Zf the mapping cylinder of f with inclusion maps i : X →֒
Zf and j : Y →֒ Zf , and with the retraction r : Zf → Y which is a homotopy
inverse of j.

Now recall the homotopy H : Zf × I → Zf from above and use it to form
a new homotopy H ′ : Q × I → Zf by setting

H ′ = H ◦ (i × IdI) ◦ (g × IdI).

Then H ′(q, 0) = (H ◦ (i × IdI))(g(q), 0) = H([g(q), 0], 0) = [g(q), 0] =
i(g(q)) = (i ◦ g)(q) and H ′(q, 1) = (H ◦ (i× IdI))(g(q), 1) = H([g(q), 0], 1) =
[g(q), 1] = j(f(g(q))) = (j ◦ f ◦ g)(q), hence H ′ : i ◦ g ≃ j ◦ f ◦ g = j ◦ h|Q.
Furthermore, the composition r ◦H ′ is invariant with respect to t ∈ I. That
is, r ◦ H ′ is a homotopy rel Q.

By Lemma ( 3.4.9) there exists a map h′ : P → Zf such that h′|Q = i ◦ g
and such that r ◦ h′ ≃ r ◦ j ◦ h rel Q. We may then consider h′ as a mapping
(P,Q) → (Zf , X). Because (Zf , X) is n-connected and dimension(P −Q) ≤
n we get from Lemma ( 3.4.16) (or from Corollary ( 3.4.17) in the infinite-
dimensional case) that h′ is homotopic rel Q to some mapping g′ : P → X.
Then g′|Q = g and

f ◦ g′ = r ◦ i ◦ g′ ≃ r ◦ h′ ≃ r ◦ j ◦ h = h

where all the homotopies are rel Q. Hence g′ is exactly as we wanted it
to be.

In the set of all functions f : X → Y we may define an equivalence
relation by setting f ∼ g ⇔ f ≃ g. The equivalence class of f may then
be denoted [f ]. The set of all such equivalence classes [f ] is from now on
denoted [X; Y ] - that is, [X; Y ] = {[f ] : f : X → Y }.

Lemma 3.5.5. Let f : X → Y be a weak homotopy equivalence, and let P
be a CW-complex. Then the induced map

f∗ : [P ; X] → [P ; Y ]

defined by [g] 7→ [f ◦ g] is a bijection.

83



Proof. We apply Lemma ( 3.5.4) to the relative CW-complex (P, ∅). As-
sume that h : P → Y . Now there is a mapping g′ : P → X such that
f ◦ g′ ≃ h, or in other words, there is a class [g′] ∈ [P ; X] such that
f∗([g

′]) = [f ◦ g′] = [h] ∈ [P ; Y ]. Hence f∗ is surjective.

To prove injectivity, assume that we have two mappings g0, g1 : P → X
such that f ◦ g0 ≃ f ◦ g1 - then there is a map g : P × İ → X such that
g(x, 0) = g0(x) and g(x, 1) = g1(x) for x ∈ P and a map H : P × I → Y
such that H|P × İ = f ◦ g. Now by applying Lemma ( 3.5.4) to the relative
CW-complex (P × I, P × İ) we find that there is a mapping g′ : P × I → X
such that g′|P × İ = g. Then g′ : g0 ≃ g1 and so [g0] = [g1]. Thus f∗ is
injective.

Proposition 3.5.6. A mapping between CW-complexes is a weak homotopy
equivalence if and only if it is a homotopy equivalence.

Proof. ”⇐” Let X and Y be topological spaces, and let f : X → Y be a
homotopy equivalence with homotopy inverse g : Y → X. Then (g ◦ f)(x)
belongs to the same path component as x for all x ∈ X; hence (g ◦ f)∗ :
π0(X, x0) → π0(X, x0) is the identity mapping. Similarly (f ◦g)∗ = Idπ0(Y,y0),
and so f induces a 1− 1-correspondence between the path components of X
and Y .

Furthermore, by Proposition ( 3.1.3), the induced map

f∗ : πn(X, x0) → πn(Y, f(x0))

is a group isomorphism for all n ≥ 1 and all base points x0 ∈ X. Hence
f is a weak homotopy equivalence.

”⇒” Now assume that f : X → Y is a weak homotopy equivalence. Then
by Lemma ( 3.5.5) f induces bijections

f∗ : [Y ; X] → [Y ; Y ], f∗ : [X; X] → [X; Y ].

Now, if g : Y → X is a mapping such that f∗([g]) = [IdY ], then since
f∗([g]) = [f ◦ g] = [IdY ] it follows that f ◦ g ≃ IdY . Furthermore,

f∗([g ◦ f ]) = [f ◦ (g ◦ f)] = [(f ◦ g) ◦ f ] = [IdY ◦ f ] = [f ◦ IdX ] = f∗([IdX ]),

and hence by the injectivity of f∗ it must be true that g ◦ f ≃ IdX .
It follows that f is a homotopy equivalence.
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3.6 A metrizable ANR is homotopy equiva-

lent to a CW complex

So we get to the point:

Theorem 3.6.1. Any metrizable ANR is homotopy equivalent to some ab-
solute CW-complex.

Let Y be a metrizable ANR. From Theorem ( 2.6.9) we know that there
exists a simplicial polytope K with the Whitehead topology which dominates
Y - that is, there exist mappings

Φ : K → Y

Ψ : Y → K

such that the composed map Φ ◦ Ψ : Y → Y is homotopic to IdY .
From Example ( 3.4.3) we know that K is in fact an absolute CW-

complex. The following is then clear:

Proposition 3.6.2. Any metrizable ANR is dominated by an absolute CW-
complex. �

Hence Theorem ( 3.6.1) follows from the following theorem:

Theorem 3.6.3. A space which is dominated by an absolute CW-complex is
homotopy equivalent to some absolute CW-complex.

Proof. Assume that the situation is as described above.

The mappings Φ and Ψ induce homomorphisms

Φ∗ : πn(K, k0) → πn(Y, Φ(k0)); Ψ∗ : πn(Y, y0) → πn(K, Ψ(y0))

between homotopy groups for all k0 ∈ K and y0 ∈ Y where n ∈ N and
functions between families of path components in the case of n = 0. Since
Φ ◦ Ψ ≃ IdY there exists for all n ∈ N0 an isomorphism (or bijection in the
case n = 0) sn : πn(Y, Φ(k0)) → πn(Y, y0) such that sn ◦ (Φ ◦Ψ)∗ = Idπn(Y,y0);
hence even (Φ ◦Ψ)∗ is an isomorphism. It follows that Φ∗ is a surjection and
that Ψ∗ is an injection for all n ∈ N0.
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The mapping Φ∗ is not generally an isomorphism. However, we may
adjoin cells to K and obtain a larger absolute CW-complex L in such a way
that Φ extends to a function Φ′ defined on the new space which induces
isomorphisms Φ′

∗ : πn(L, l0) → πn(Y, Φ′(l0)) for all l0 ∈ L and for all n ∈ N
and a bijection when n = 0. We may define a mapping Ψ′ : Y → L by setting
Ψ′ = i ◦ Ψ where i : K →֒ L is the inclusion mapping. Then if y ∈ Y ,

(Φ′ ◦ Ψ′)(y) = Φ′(Ψ′(y)) = Φ′(Ψ(y)) = Φ(Ψ(y)) = (Φ ◦ Ψ)(y)

and it follows that Φ′ ◦ Ψ′ = Φ ◦ Ψ ≃ IdY . Now there exist again
isomorphisms sn : πn(Y, Φ′(k0)) → πn(Y, y0) such that sn ◦ (Φ′ ◦ Ψ′)∗ =
Idπn(Y,y0); then Φ′

∗ ◦ Ψ′
∗ = (Φ′ ◦ Ψ′)∗

is an isomorphism and since Φ′
∗ is an isomorphism for all n then so is Ψ′

∗.
It follows that

(Ψ′ ◦ Φ′)∗ : πn(L, l0) → πn(L, (Ψ′ ◦ Φ′)(l0))

is an isomorphism for all l0 ∈ L and hence Ψ′ ◦ Φ′ is a homotopy equiva-
lence.

Now if f : L → L is a homotopy inverse of Ψ′ ◦ Φ′, then we obtain

Ψ′◦Φ′ ≃ (Ψ′◦Φ′)◦(Ψ′◦Φ′◦f) = Ψ′◦(Φ′◦Ψ′)◦Φ′◦f ≃ Ψ′◦IdY ◦Φ
′◦f = Ψ′◦Φ′◦f ≃ IdL.

We already know that Φ′◦Ψ′ ≃ IdY , and hence Φ′ : L → Y is a homotopy
equivalence with homotopy inverse Ψ′ : Y → L.

Hence it only remains to construct the absolute CW-complex L with the
extended mapping Φ′ : L → Y such that Φ′

∗ : πn(L, l0) → πn(Y, Φ′(l0)) is
an isomorphism for all n ∈ N and a bijection in the case n = 0, for all base
points l0 ∈ L and such that Φ′|K = Φ.

We will construct the space L and the mapping Φ′ by inductively adding
cells and extending the mapping one step at a time.

We set M0 = K and L0 = (M0)0 = K0. Now M0 is an absolute CW-
complex containing K and L0 is its 0-skeleton.

First choose some base point k0 ∈ K and consider the induced mapping

Φ∗ : π0(M
0, k0) = π0(K, k0) → π0(Y, Φ(k0))

between the families of path components of K and Y , respectively. It is
surjective, as stated earlier. If Φ∗ is injective then it is a bijection and we
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may set L1 = K. In case Φ∗ is not injective, then we have some mapping
fi : (S0

i , 1) = (S0, 1) → (K, k0) such that fi ≃ ǫ is not true but Φ ◦ fi ≃ ǫ
(That is, fi(−1) and fi(1) lie in different path components of K but are taken
to the same path component of Y by Φ).

Since by Theorem ( 3.4.19) (K,K0) is 0-connected, every path compo-
nent of K intersects K0; hence we may define a homotopy H i : S0

i × I → K
such that H i

0 = fi and H i
1 = gi where gi : S0

i → K0. Now we may use this
mapping gi to adjoin a 1-cell e1

i to K0 = L0.

Since [Φ ◦ gi] = 0 it follows that (Φ ◦ gi)(S
0
i ) is contained in one path

component and so there exists an extension γi : B
1

i → Y of Φ ◦ gi.

We repeat this procedure for each i ∈ J , where {[fi] : i ∈ J} = {[f ] ∈
π0(K)|[f ] 6= 0 ∧ [Φ ◦ f ] = 0}, and then repeat the whole thing for each base
point k0 ∈ K.

Let {e1
i : i ∈ I} be the set of all 1-cells added and let their attaching

maps be fi for all i ∈ I.

Now define the adjunction space M1 = K∪
⋃

i∈I e1
i ; this M1 is an absolute

CW-complex (See Example ( 3.4.4). Also define L1 = (M1)1, the 1-skeleton
of M1.

In order to extend the mapping Φ we define a new mapping

Φ∗ : K∪̇
˙⋃

i∈I
B

1

i → Y

by setting

Φ∗(k) = Φ(k) if k ∈ K; Φ∗(t) = γi(t) if t ∈ B
1

i

Now we may define a function

Φ1 : M1 → Y

by setting

Φ1(m) = Φ∗(x)

where x ∈ π−1(m) where π : K∪̇ ˙⋃
i∈IB

1
i → M1 is the canonical pro-

jection. Now, since π is a quotient map and Φ∗ is continuous, Φ1 is also
continuous. Furthermore,
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Φ1
∗ : π0(M

1, k0) → π0(Y, Φ1(k0))

is a bijection for each base point k0 ∈ K. It is then easy to see that this
map is in fact a bijection for all basepoints k0 ∈ M1.

Now let n ∈ N and assume that we have found an absolute CW-complex
Mn and a mapping Φn : Mn → Y such that K is a subcomplex of Mn and
such that

Φn
∗ : πk(M

n,m0) → πk(Y, Φn(m0))

is a bijection for k = 0 and an isomorphism for k ∈ {1, ..., n − 1} for all
base points m0 ∈ Ln, where Ln = (Mn)n.

Consider the induced mapping

Φn
∗ : πn(Mn,m0) → πn(Y, Φn(m0)).

Since Φn◦Ψn = Φ◦Ψ ≃ IdY it follows that Φn
∗ ◦Ψn

∗ is an isomorphism and
we see that Φn

∗ is a surjection for all base points m0. In case Φn
∗ is injective

for all m0, set Mn+1 = Mn and Φn+1 = Φn. In case Φn
∗ is not injective for

each base point m0, denote by

{[fi] : i ∈ I}

the set of generators of KerΦn
∗ . Then the maps fi : (Sn, s0) → (Mn,m0)

are continuous.

Let i ∈ I. Then fi : (Sn, s0) → (Mn, Ln) where dimension(Sn − s0) ≤ n
and (Mn, Ln) is n-connected by Theorem ( 3.4.18), hence by Lemma ( 3.4.16)
there exists a mapping gi : Sn → Ln such that fi ≃ gi. Now we use this
mapping gi to adjoin an n + 1-cell en+1

i to (Mn)n, and we do the same for
each i ∈ I. Repeat the whole procedure for all base points m0 ∈ Ln, and
denote by {en+1

i : i ∈ I ′} the set of new cells, and let their attaching maps
be fi for all i ∈ I ′.

We define the adjunction space Mn+1 = Mn ∪
⋃

i∈I en+1
i and Ln+1 =

(Mn+1)n+1, which makes Mn+1 an absolute CW-complex containing K and
Ln+1 its n + 1-skeleton (See Example ( 3.4.4) for a proof that Mn+1 is an
absolute CW-complex).

Since for each i ∈ I [fi] = [gi] we have that Φn ◦ gi ≃ ǫ where ǫ : Sn → Y

is a constant map. We may extend the constant map ǫ to B
n+1

, and thus
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since the inclusion Sn → B
n+1

is a cofibration, we may extend the whole

homotopy to B
n+1

× I. It follows that there exists a continuous extension

(Φn)∗i of Φn ◦ gi to B
n+1

= B
n+1

i . Note that the only reason why it is possi-
ble to extend this mapping Φn◦gi is that it is homotopic to the constant map!

We define the mapping (Φn+1)∗ : Mn∪̇ ˙⋃
i∈IB

n+1

i → Y by setting

(Φn+1)∗(x) = Φn(x) if x ∈ Mn; (Φn+1)∗(x) = (Φn)∗i (x) if x ∈ B
n+1

i

Because (Φn+1)∗(x) = (Φn)∗i (x) = (Φn ◦ fi)(x) = (Φn+1)∗(fi(x)) whenever

x ∈ Sn
i = ∂B

n+1

i there is a well-defined function Φn+1 : Mn+1 → Y given by

Φn+1(m) = (Φn+1)∗(x)

where x ∈ π−1(m) and where π : Mn∪̇ ˙⋃
i∈IB

n+1

i → Mn+1 is the canonical
projection. Because π is a quotient map Φn+1 is continuous.

Claim: Now (Φn+1)∗ : πk(M
n+1,m0) → πk(Y, y0) where y0 = Φn+1(m0)

is an isomorphism when k = 1, ..., n and a bijection when k = 0 for all base
points m0 ∈ Ln.

Proof: Let k ∈ {1, 2, ..., n − 1} and let g : (Sk, s) → (Mn+1,m0) where
m0 ∈ Ln be such that Φn+1

∗ ([g]) = 0 ∈ πn(Y, y0). Then since dimension(Sk−
s) ≤ n and (Mn+1,Mn) is n-connected there exists a mapping h : Sk → Mn

such that g ≃ h rel x0. Then

[Φn ◦ h] = [Φn+1 ◦ g] = 0 ∈ πk(Y, y0)

and since Φn
∗ is an isomorphism, h is nullhomotopic in Mn. But then g is

nullhomotopic in Mn+1 and so Φn+1
∗ is injective. It is easy to see that Φn+1

∗

is also surjective since Φn
∗ was.

For the homotopy classes [fi] where i ∈ I we now have that fi ≃ gi = π◦ i

where i : Sn →֒ B
n+1

i →֒ Mn∪̇ ˙⋃
i∈IB

n+1

i and since B
n+1

i is contractible, i is
nullhomotopic, and thus so is π ◦ i = fi. Hence [fi] = 0 ∈ πn(Mn+1,m0) for
all base points m0 ∈ Ln.

Since the [fi] were the generators of KerΦn
∗ and all the elements of

πn(Mn+1,m0) correspond to elements of πn(Mn,m0) the [fi] are also gen-
erators of KerΦn+1

∗ . But since they are all zero in πn(Mn+1,m0), it follows
that KerΦn+1

∗ = 0. Hence Φn+1
∗ : πn(Mn+1,m0) → πn(Y, y0) is injective and
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it is of course surjective since Φn
∗ was surjective.

Finally, when constructing Mn+1 from Mn we did not add any new path
components; hence π0(M

n+1,m0) ∼= π0(M
n,m0) and so Φn+1

∗ is a bijection
when k = 0 for all base points m0 ∈ Ln.

Furthermore, one can easily see that the argument holds also for base
points m0 ∈ Ln+1. �

We define the CW-complex L to be the one whose n-skeleton is Ln for all
n ∈ N0 and we define the mapping Ψ′ : L → Y by setting

Ψ′(x) = Ψn(x) if x ∈ Ln

Now the mapping Ψ′ is continuous because it is continuous on every Ln.

Claim: The mapping

Ψ′
∗ : πn(L, l0) → πn(Y, Ψ′(l0))

is an isomorphism when n ∈ N and a bijection when n = 0 for all l0 ∈ L.

Proof: Let n ∈ N. Now Ψ′
∗ is surjective since all of the Ψn

∗ were so.
Assume that [f ] ∈ KerΨ′

∗. Then f : (Sn, s) → (L, l0), but since Sn is com-
pact, then so is f(Sn) and so by Proposition ( 3.4.6) f(Sn) ⊂ Lm for some
m ∈ N0. We may assume m ≥ n. Now Ψn ◦ f = Ψ′ ◦ f ≃ ǫ rel s where ǫ is
the constant map; hence [f ] ∈ KerΨn

∗ - but KerΨn
∗ = 0 ∈ πn(Mm, l0) and

hence [f ] = 0 ∈ πn(L, l0).

Now assume n = 0. Since adding n-cells for n > 1 did not add or remove
any path components to or from those in L0 we have that Ψ′

∗ : π0(L, l0) →
π0(Y, Ψ′(l0)) is a bijection.

Hence Theorem ( 3.6.3) has been proved.

The proof of Theorem ( 3.6.1) is hereby completed. �

Corollary 3.6.4. A topological manifold is homotopy equivalent to a CW-
complex.

Proof. By Theorem ( 2.7.7) a topological manifold is a metrizable ANR, and
hence by Theorem ( 3.6.1) homotopy equivalent to some CW-complex.
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