Welcome to Copenhagen!

Schedule:

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Registration and welcome</td>
<td>Crash course on Differential and Riemannian Geometry 1.1 (Feragen)</td>
<td>Crash course on Differential and Riemannian Geometry 3 (Lauze)</td>
<td>Information Geometry & Stochastic Optimization 1.1 (Amari)</td>
<td>Information Geometry & Stochastic Optimization in Discrete Domains 1.1 (Màlago)</td>
</tr>
<tr>
<td>9</td>
<td>Crash course on Differential and Riemannian Geometry 1.2 (Feragen)</td>
<td>Tutorial on numerics for Riemannian geometry 1.1 (Sommer)</td>
<td>Introduction to Information Geometry 3.2 (Amari)</td>
<td>Information Geometry & Stochastic Optimization 1.2 (Hansen)</td>
<td>Information Geometry & Stochastic Optimization in Discrete Domains 1.2 (Màlago)</td>
</tr>
<tr>
<td>10</td>
<td>Crash course on Differential and Riemannian Geometry 1.3 (Feragen)</td>
<td>Tutorial on numerics for Riemannian geometry 1.2 (Sommer)</td>
<td>Introduction to Information Geometry 3.3 (Amari)</td>
<td>Information Geometry & Stochastic Optimization 1.3 (Hansen)</td>
<td>Information Geometry & Stochastic Optimization in Discrete Domains 1.3 (Màlago)</td>
</tr>
<tr>
<td>11</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>13</td>
<td>Crash course on Differential and Riemannian Geometry 2.2 (Lauze)</td>
<td>Introduction to Information Geometry 2.2 (Amari)</td>
<td>Information Geometry & Reinforcement Learning 1.2 (Peters)</td>
<td>Information Geometry & Stochastic Optimization 1.5 (Hansen)</td>
<td>Information Geometry & Cognitive Systems 1.2 (Ay)</td>
</tr>
<tr>
<td>14</td>
<td>Introduction to Information Geometry 1.1 (Amari)</td>
<td>Introduction to Information Geometry 2.3 (Amari)</td>
<td>Information Geometry & Reinforcement Learning 1.3 (Peters)</td>
<td>Stochastic Optimization in Practice 1.1 (Hansen)</td>
<td>Information Geometry & Cognitive Systems 1.3 (Ay)</td>
</tr>
</tbody>
</table>

Coffee breaks at 10:00 and 14:45 (no afternoon break on Wednesday)
Welcome to Copenhagen!

Social Programme!

- **Today:** Pizza and walking tour!
 - 17:15 Pizza dinner in lecture hall
 - 18:00 Departure from lecture hall (with Metro – we have tickets)
 - 19:00 Walking tour of old university

- **Wednesday:** Boat tour, Danish beer and dinner
 - 15:20 Bus from KUA to Nyhavn
 - 16:00-17:00 Boat tour
 - 17:20 Bus from Nyhavn to Nørrebro bryghus (NB, brewery)
 - 18:00 Guided tour of NB
 - 19:00 Dinner at NB
Welcome to Copenhagen!

- Lunch on your own – canteens and coffee on campus
- Internet connection
 - Eduroam
 - Alternative will be set up ASAP
- Emergency? Call Aasa: +4526220498
- Questions?
A Very Brief Introduction to Differential and Riemannian Geometry

Aasa Feragen and François Lauze
Department of Computer Science
University of Copenhagen
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Why do we care about nonlinearity?

- Nonlinear relations between data objects
- True distances not reflected by linear representation

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Mildly nonlinear: Nonlinear transformations between different linear representations

- Kernels!
- Feature map = nonlinear transformation of (linear?) data space X into linear feature space \mathcal{H}
- Learning problem is (usually) linear in \mathcal{H}, not in X.
Mildly nonlinear: Nonlinearly embedded subspaces whose intrinsic metric is linear

- Manifold learning!
 - Find intrinsic dataset distances
 - Find an \mathbb{R}^d embedding that minimally distorts those distances
Mildly nonlinear: Nonlinearly embedded subspaces whose intrinsic metric is linear

- Manifold learning!
 - Find intrinsic dataset distances
 - Find an \mathbb{R}^d embedding that minimally distorts those distances
- Searches for the folded-up *Euclidean* space that best fits the data
 - the embedding of the data in feature space is *nonlinear*
 - the recovered intrinsic distance structure is *linear*
More nonlinear: Data spaces which are intrinsically nonlinear

- Distances distorted in nonlinear way, varying spatially
- We shall see: the distances cannot always be linearized

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Intrinsically nonlinear data spaces: Smooth manifolds

Definition

A *manifold* is a set M with an associated one-to-one map $\varphi: U \rightarrow M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

$$U = \mathbb{R}^2$$

$$\varphi$$

M
Intrinsically nonlinear data spaces: Smooth manifolds

Definition

A *manifold* is a set M with an associated one-to-one map $\varphi: U \rightarrow M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

- Open set $U \subset \mathbb{R}^m$ = set that does not contain its boundary
- Manifold M gets its *topology* (= *definition of open sets*) from U via φ
Intrinsically nonlinear data spaces: Smooth manifolds

Definition

A *manifold* is a set M with an associated one-to-one map $\varphi: U \to M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

- Open set $U \subset \mathbb{R}^m = \text{set that does not contain its boundary}$
- Manifold M gets its *topology* (= definition of open sets) from U via φ
- What are the implications of getting the topology from U?
Intrinsically nonlinear data spaces: Smooth manifolds

Definition

A *smooth* manifold is a pair \((M, A)\) where

- \(M\) is a set
- \(A\) is a family of one-to-one global charts \(\varphi : U \to M\) from some open subset \(U = U_\varphi \subset \mathbb{R}^m\) for \(M\),
- for any two charts \(\varphi : U \to \mathbb{R}^m\) and \(\psi : V \to \mathbb{R}^m\) in \(A\), their corresponding change of variables is a smooth diffeomorphism \(\psi^{-1} \circ \varphi : U \to V \subset \mathbb{R}^m\).
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Differentiable and smooth functions

- $f : U \text{ open } \subset \mathbb{R}^n \rightarrow \mathbb{R}^q$ continuous: write

$$(y_1, \ldots, y_q) = f(x_1, \ldots, x_n)$$
Differentiable and smooth functions

- \(f : U \text{ open} \subset \mathbb{R}^n \rightarrow \mathbb{R}^q \) continuous: write
 \[
 (y_1, \ldots, y_q) = f(x_1, \ldots, x_n)
 \]

- \(f \) is of class \(C^r \) if \(f \) has continuous partial derivatives
 \[
 \frac{\partial^{r_1 + \cdots + r_n} y_k}{\partial x_1^{r_1} \cdots \partial x_n^{r_n}}
 \]
 \(k = 1 \ldots q, \ r_1 + \cdots r_n \leq r \).
Differentiable and smooth functions

- \(f : U \text{ open} \subset \mathbb{R}^n \rightarrow \mathbb{R}^q \) continuous: write
 \[
 (y_1, \ldots, y_q) = f(x_1, \ldots, x_n)
 \]

- \(f \text{ is of class } \mathcal{C}^r \) if \(f \) has continuous partial derivatives
 \[
 \frac{\partial^{r_1 + \cdots + r_n} y_k}{\partial x_1^{r_1} \cdots \partial x_n^{r_n}}
 \]
 \(k = 1 \ldots q, \ r_1 + \ldots r_n \leq r \).

- When \(r = \infty \), \(f \) is smooth. Our focus.
Differential, Jacobian Matrix

- **Differential of** \(f \) in \(x \): unique linear map (if exists) \(d_x f : \mathbb{R}^n \rightarrow \mathbb{R}^q \) s.t.

 \[
 f(x + h) = f(x) + d_x f(h) + o(h).
 \]
Differential, Jacobian Matrix

• **Differential of f in x:** unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$

 s.t.

 $$f(x + h) = f(x) + d_x f(h) + o(h).$$

• **Jacobian matrix of f:** matrix $q \times n$ of partial derivatives of f:

$$J_x f = \begin{pmatrix}
\frac{\partial y_1}{\partial x_1}(x) & \cdots & \frac{\partial y_1}{\partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial y_q}{\partial x_1}(x) & \cdots & \frac{\partial y_q}{\partial x_n}(x)
\end{pmatrix}$$
Differential, Jacobian Matrix

- **Differential of** \(f \) **in** \(x \): unique linear map (if exists) \(d_x f : \mathbb{R}^n \rightarrow \mathbb{R}^q \) s.t.

\[
f(x + h) = f(x) + d_x f(h) + o(h).
\]

- **Jacobian matrix of** \(f \): matrix \(q \times n \) of partial derivatives of \(f \):

\[
J_x f = \begin{pmatrix}
\frac{\partial y_1}{\partial x_1}(x) & \cdots & \frac{\partial y_1}{\partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial y_q}{\partial x_1}(x) & \cdots & \frac{\partial y_q}{\partial x_n}(x)
\end{pmatrix}
\]

- **What is the meaning of the Jacobian? The differential? How do they differ?**
Diffeomorphism

• **When** $n = q$:
 - If f is 1-1, f and f^{-1} both C^r
 - $\sim f$ is a C^r-diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a diffeomorphisms.
Diffeomorphism

- **When** \(n = q \):
 - If \(f \) is 1-1, \(f \) and \(f^{-1} \) both \(C^r \)
 - \(\sim \) \(f \) is a \(C^r \)-diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a (smooth) diffeomorphisms.

- **Inverse Function Theorem:**
 - \(f \) diffeomorphism \(\Rightarrow \) \(\det(J_x f) \neq 0 \).
 - \(\det(J_x f) \neq 0 \) \(\Rightarrow \) \(f \) local diffeomorphism in a neighborhood of \(x \).
Diffeomorphism

• **When** $n = q$:
 - If f is 1-1, f and f^{-1} both C^r
 - $\sim f$ is a C^r-diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a diffeomorphisms.

• Inverse Function Theorem:
 - f diffeomorphism \Rightarrow $\det(J_x f) \neq 0$.
 - $\det(J_x f) \neq 0 \Rightarrow f$ local diffeomorphism in a neighborhood of x.

• What is the meaning of $J_x f$? Of $\det(J_x f) \neq 0$?
Diffeomorphism

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:

 $$ f : \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \mapsto (e^x \cos(y), e^x \sin(y)). $$

 Recall its inverse (the complex log) has infinitely many branches.
Diffeomorphism

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:
 \[f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2, \quad (x, y) \mapsto (e^x \cos(y), e^x \sin(y)). \]
 Recall its inverse (the complex log) has infinitely many branches.

- If f is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.
Diffeomorphism

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:
 \[f : \mathbb{R}^2 \setminus 0 \rightarrow \mathbb{R}^2, \quad (x, y) \rightarrow (e^x \cos(y), e^x \sin(y)). \]
 Recall its inverse (the complex log) has infinitely many branches.

- If f is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.
- What is the intuitive meaning of a diffeomorphism?
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Back to smooth manifolds

Definition

A *smooth* manifold is a pair \((M, \mathcal{A})\) where

- \(M\) is a set
- \(\mathcal{A}\) is a family of one-to-one global charts \(\varphi: U \to M\) from some open subset \(U = U_\varphi \subset \mathbb{R}^m\) for \(M\),
- for any two charts \(\varphi: U \to \mathbb{R}^m\) and \(\psi: V \to \mathbb{R}^m\), their corresponding *change of variables* is a smooth diffeomorphism \(\psi^{-1} \circ \varphi: U \to V \subset \mathbb{R}^m\).
Back to smooth manifolds

Definition

A *smooth* manifold is a pair \((M, \mathcal{A})\) where

- \(M\) is a set
- \(\mathcal{A}\) is a family of one-to-one global charts \(\varphi : U \to M\) from some open subset \(U = U_\varphi \subset \mathbb{R}^m\) for \(M\),
- for any two charts \(\varphi : U \to \mathbb{R}^m\) and \(\psi : V \to \mathbb{R}^m\), their corresponding *change of variables* is a smooth diffeomorphism \(\psi^{-1} \circ \varphi : U \to V \subset \mathbb{R}^m\).

- What are the implications of inheriting structure through \(\mathcal{A}\)?
Back to smooth manifolds

- φ and ψ are parametrizations of M

$U = \mathbb{R}^2$ \quad φ \quad $\psi^{-1} \circ \varphi$ \quad $V = \mathbb{R}^2$
Back to smooth manifolds

- \(\varphi \) and \(\psi \) are parametrizations of \(M \)
- Set \(\varphi_j(P) = (y^1(P), \ldots, y^n(P)) \), then

\[
\varphi_j \circ \varphi_i^{-1}(x_1, \ldots, x_m) = (y_1, \ldots, y_m)
\]

and the \(m \times m \) Jacobian matrices \(\left(\frac{\partial y^k}{\partial x^h} \right)_{k,h} \) are invertible.
Example: Euclidean space

- The Euclidean space \mathbb{R}^n is a manifold: take $\varphi = id$ as global coordinate system!
Example: Smooth surfaces

- Smooth surfaces in \mathbb{R}^n that are the image of a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^n$.
- A global coordinate system given by f
Example: Symmetric Positive Definite Matrices

- $\mathcal{P}(n) \subset GL_n$ consists of all symmetric $n \times n$ matrices A that satisfy
 \[xA x^T > 0 \text{ for any } x \in \mathbb{R}^n, \] (positive definite – PD – matrices)

- $\mathcal{P}(n) =$ the set of covariance matrices on \mathbb{R}^n
- $\mathcal{P}(3) =$ the set of (diffusion) tensors on \mathbb{R}^3

- **Global chart:** $\mathcal{P}(n)$ is an open, convex subset of $\mathbb{R}^{(n^2+n)/2}$
 - $A, B \in \mathcal{P}(n) \rightarrow aA + bB \in \mathcal{P}(n)$ for all $a, b > 0$ so $\mathcal{P}(n)$ is a convex cone in $\mathbb{R}^{(n^2+n)/2}$.

Middle figure from Fillard et al., A Riemannian Framework for the Processing of Tensor-Valued Images, LNCS 3753, 2005, pp 112-123. Rightmost figure from Fletcher, Joshi, Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors, CVAMIA04
Example: Space of Gaussian distributions

- The space of n-dimensional Gaussian distributions is a smooth manifold
- **Global chart:** $(\mu, \Sigma) \in \mathbb{R}^n \times \mathcal{P}(n)$.
Example: Space of 1-dimensional Gaussian distributions

- The space of 1-dimensional Gaussian distributions is parametrized by \((\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+, \) mean \(\mu,\) standard deviation \(\sigma\)
- Also parametrized by \((\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+, \) mean \(\mu,\) variance \(\sigma^2\)
- Smooth reparametrization \(\psi^{-1} \circ \varphi\)
In general: Manifolds requiring multiple charts

The sphere $S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1 - z}, \frac{y}{1 - z} \right)$$

is a (large) local coordinate system (around the south pole).
In general: Manifolds requiring multiple charts

The sphere $S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1 - z}, \frac{y}{1 - z} \right)$$

is a (large) local coordinate system (around the south pole).

In these cases, we also require the charts to overlap ”nicely”
In general: Manifolds requiring multiple charts

The Moebius strip

\[
\begin{aligned}
&u \in [0, 2\pi], \\
v \in \left[\frac{1}{2}, \frac{1}{2}\right]
\end{aligned}
\]

\[
\begin{pmatrix}
\cos(u) \left(1 + \frac{1}{2} v \cos\left(\frac{u}{2}\right)\right) \\
\sin(u) \left(1 + \frac{1}{2} v \cos\left(\frac{u}{2}\right)\right) \\
\frac{1}{2} v \sin\left(\frac{u}{2}\right)
\end{pmatrix}
\]

The 2D-torus

\[
(u, v) \in [0, 2\pi]^2, \quad R \gg r > 0
\]

\[
\begin{pmatrix}
\cos(u) \left(R + r \cos(v)\right) \\
\sin(u) \left(R + r \cos(v)\right) \\
r \sin(v)
\end{pmatrix}
\]
Smooth maps between manifolds

- $f: M \to N$ is smooth if its expression in any global coordinates for M and N is $\psi^{-1} \circ f \circ \varphi$ is smooth.
Smooth maps between manifolds

- \(f : M \rightarrow N \) is smooth if its expression in any global coordinates for \(M \) and \(N \) is.
- \(\varphi \) global coordinates for \(M \), \(\psi \) global coordinates for \(N \)
Smooth maps between manifolds

- $f : M \to N$ is smooth if its expression in any global coordinates for M and N is.
- φ global coordinates for M, ψ global coordinates for N

$$\varphi^{-1} \circ f \circ \psi \text{ smooth.}$$
Smooth diffeomorphism between manifolds

- $f : M \rightarrow N$ is a **smooth diffeomorphism** if its expression in any global coordinates for M and N is.
Smooth diffeomorphism between manifolds

• \(f: M \to N \) is a smooth diffeomorphism if its expression in any global coordinates for \(M \) and \(N \) is.

• \(\varphi \) global coordinates for \(M \), \(\psi \) global coordinates for \(N \)
Smooth diffeomorphism between manifolds

- \(f : M \to N \) is a smooth diffeomorphism if its expression in any global coordinates for \(M \) and \(N \) is.
- \(\varphi \) global coordinates for \(M \), \(\psi \) global coordinates for \(N \)

\[\varphi^{-1} \circ f \circ \psi \text{ smooth diffeomorphism} . \]
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Submanifolds of \mathbb{R}^N

- Take $f : U \subset \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
Submanifolds of \mathbb{R}^N

- Take $f : U \subset \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
Submanifolds of \mathbb{R}^N

- Take $f : U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $x \in M$, f is a submersion at x ($d_x f$ has full rank), M is a manifold of dimension $m - n$.
Submanifolds of \mathbb{R}^N

- Take $f : U \in \mathbb{R}^m \rightarrow \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $x \in M$, f is a submersion at x ($d_x f$ has full rank), M is a manifold of dimension $m - n$.
- Example:

$$f(x_1, \ldots, x_m) = 1 - \sum_{i=1}^{m} x_i^2 :$$

$f^{-1}(0)$ is the $(m - 1)$-dimensional unit sphere S^{m-1}.
Submanifolds of \mathbb{R}^N

- Take $f : U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $x \in M$, f is a submersion at x ($d_x f$ has full rank), M is a manifold of dimension $m - n$.
- Example:

$$f(x_1, \ldots, x_m) = 1 - \sum_{i=1}^{m} x_i^2 : \mathbb{R}^m \to \mathbb{R}^n$$

$f^{-1}(0)$ is the $(m - 1)$-dimensional unit sphere S^{m-1}.
- The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f : \mathbb{R}^m \to \mathbb{R}^n$.
Submanifolds of \mathbb{R}^N

- Take $f : U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $x \in M$, f is a submersion at x ($d_x f$ has full rank), M is a manifold of dimension $m - n$.
- Example:

 $$f(x_1, \ldots, x_m) = 1 - \sum_{i=1}^{m} x_i^2 :$$

 $f^{-1}(0)$ is the $(m - 1)$-dimensional unit sphere S^{m-1}.
- The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f : \mathbb{R}^m \to \mathbb{R}^n$.
 - $\Gamma = F(0)$ for $F : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$, $F(x, y) = y - f(x)$.
Submanifolds of \mathbb{R}^N

• Take $f : U \in \mathbb{R}^m \rightarrow \mathbb{R}^n$, $n \leq m$ smooth.
• Set $M = f^{-1}(0)$.
• If for all $x \in M$, f is a submersion at x ($d_x f$ has full rank), M is a manifold of dimension $m - n$.
• Example:

$$f(x_1, \ldots, x_m) = 1 - \sum_{i=1}^{m} x_i^2$$

$f^{-1}(0)$ is the $(m - 1)$-dimensional unit sphere S^{m-1}.
• The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$.
 • $\Gamma = F(0)$ for $F : \mathbb{R}^m \times \mathbb{R}^n \rightarrow \mathbb{R}^n$, $F(x, y) = y - f(x)$.
• Many common examples of manifolds in practice are of that type.
Product Manifolds

- M and N manifolds, so is $M \times N$.
Product Manifolds

- M and N manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
Product Manifolds

- M and N manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = S^1$, $N = \mathbb{R}$: the cylinder
Product Manifolds

- M and N manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = S^1$, $N = \mathbb{R}$: the cylinder

$$
\begin{array}{c}
\text{circle} \\
\times \\
\text{cylinder}
\end{array}
$$

- Example: $M = N = S^1$: the torus

$$
\begin{array}{c}
\text{circle} \\
\times \\
\text{circle} \\
\end{array}
$$
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Tangent vectors informally

- How can we quantify tangent vectors to a manifold?
Tangent vectors informally

- How can we quantify tangent vectors to a manifold?
Tangent vectors informally

• How can we quantify tangent vectors to a manifold?
• Informally: a tangent vector at $P \in M$: draw a curve $c : (-\varepsilon, \varepsilon) \to M$, $c(0) = P$, then $\dot{c}(0)$ is a tangent vector.
A bit more formally

\[c : (-\varepsilon, \varepsilon) \to M, \quad c(0) = P. \]

In chart \(\phi \), the map \(t \mapsto \phi \circ c(t) \) is a curve in Euclidean space, and so is \(t \mapsto \psi \circ c(t) \).

\[v = (\phi^{-1} \circ c)'(0), \quad w = (\psi^{-1} \circ c)'(0). \]

\[w = J_0(\phi^{-1} \circ \psi)(v). \]

Use this relation to identify vectors in different coordinate systems!
A bit more formally

- $c: (-\varepsilon, \varepsilon) \to M$, $c(0) = P$. In chart φ, the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.

\[w = (\psi^{-1} \circ c)'(0) \]

\[v = (\varphi^{-1} \circ c)'(0) \]
A bit more formally

- \(c: (-\varepsilon, \varepsilon) \to M, \ c(0) = P \). In chart \(\varphi \), the map \(t \mapsto \varphi \circ c(t) \) is a curve in Euclidean space, and so is \(t \mapsto \psi \circ c(t) \).

- Set \(v = \frac{d}{dt} (\varphi \circ c)|_0 \), \(w = \frac{d}{dt} (\psi \circ c)|_0 \) then
 \[
 w = J_0 (\varphi^{-1} \circ \psi) \ v.
 \]

 \((J_0 f = \text{Jacobian of } f \text{ at } 0)\)
A bit more formally

- \(c: (-\varepsilon, \varepsilon) \rightarrow M, \ c(0) = P \). In chart \(\varphi \), the map \(t \mapsto \varphi \circ c(t) \) is a curve in Euclidean space, and so is \(t \mapsto \psi \circ c(t) \).
- Set \(v = \frac{d}{dt}(\varphi \circ c)|_0 \), \(w = \frac{d}{dt}(\psi \circ c)|_0 \) then
 \[w = J_0 (\varphi^{-1} \circ \psi) \ v. \]
 \((J_0 f = \text{Jacobian of } f \text{ at } 0)\)
- Use this relation to identify vectors in different coordinate systems!
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the **tangent space of M at P** denoted $T_P M$.
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the **tangent space of M at P** denoted T_PM.
- It is a vector space of dimension m:

![Diagram of tangent space](image-url)
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the **tangent space of M at P** denoted $T_P M$.
- It is a vector space of dimension m:
 - Let φ be a global chart for M
 - Define curves $c_i : t \mapsto \varphi(0, \ldots, 0, t, 0, 0)$.
 - They go through P when $t = 0$ and follow the axes.
 - Their derivative at 0 are denoted ∂x_i, or sometimes $\frac{\partial}{\partial x_i}$.
 - The ∂x_i form a basis of $T_P M$.
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted $T_P M$.
- It is a vector space of dimension m:
 - Let φ be a global chart for M.
 - $\varphi(x_1, \ldots, x_m) \in M$ with $\varphi(0) = P$.
Tangent space

- The set of tangent vectors to the \(m\)-dimensional manifold \(M\) at point \(P\) is the tangent space of \(M\) at \(P\) denoted \(T_P M\).
- It is a vector space of dimension \(m\):
 - Let \(\varphi\) be a global chart for \(M\)
 - \(\varphi(x_1, \ldots, x_m) \in M\) with \(\varphi(0) = P\).
 - Define curves
 \[
 c_i : t \mapsto \varphi(0, \ldots, 0, t, 0, 0).
 \]
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension m:
 - Let φ be a global chart for M
 - $\varphi(x_1, \ldots, x_m) \in M$ with $\varphi(0) = P$.
 - Define curves $c_i: t \mapsto \varphi(0, \ldots, 0, t, 0, 0)$.
 - They go through P when $t = 0$ and follow the axes.
Tangent space

- The set of tangent vectors to the \(m \)-dimensional manifold \(M \) at point \(P \) is the tangent space of \(M \) at \(P \) denoted \(T_P M \).
- It is a vector space of dimension \(m \):
 - Let \(\varphi \) be a global chart for \(M \)
 - \(\varphi(x_1, \ldots, x_m) \in M \) with \(\varphi(0) = P \).
 - Define curves
 \[
 c_i : t \mapsto \varphi(0, \ldots, 0, t, 0, 0).
 \]
 - They go through \(P \) when \(t = 0 \) and follow the axes.
 - Their derivative at 0 are denoted \(\partial x_i \), or sometimes \(\frac{\partial}{\partial x_i} \).
Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted $T_P M$.
- It is a vector space of dimension m:
 - Let φ be a global chart for M
 - $\varphi(x_1, \ldots, x_m) \in M$ with $\varphi(0) = P$.
 - Define curves
 $$c_i: t \mapsto \varphi(0, \ldots, 0, t, 0, 0).$$
 - They go through P when $t = 0$ and follow the axes.
 - Their derivative at 0 are denoted ∂_{x_i}, or sometimes $\frac{\partial}{\partial x_i}$.
 - The ∂_{x_i} form a basis of $T_P M$.
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Vector fields

- A vector field is a smooth map that sends $P \in M$ to a vector $v(P) \in T_P M$.
Outline

1 Motivation
 - Nonlinearity
 - Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 - Smooth manifolds
 - Building Manifolds
 - Tangent Space
 - Vector fields
 - Differential of smooth map

3 Riemannian metrics
 - Introduction to Riemannian metrics
 - Recall: Inner Products
 - Riemannian metrics
 - Invariance of the Fisher information metric
 - A first take on the geodesic distance metric
 - A first take on curvature
Differential of a smooth map

- $f : M \to N$ smooth, $P \in M$, $f(P) \in N$
Differential of a smooth map

- $f : M \rightarrow N$ smooth, $P \in M$, $f(P) \in N$
- $d_P f : T_PM \rightarrow T_{f(P)}N$ linear map corresponding to the Jacobian matrix of f in local coordinates.
Differential of a smooth map

- $f : M \to N$ smooth, $P \in M$, $f(P) \in N$
- $d_P f : T_PM \to T_{f(P)}N$ linear map corresponding to the Jacobian matrix of f in local coordinates.
- When $N = \mathbb{R}$, $d_P f$ is a linear form $T_PM \to \mathbb{R}$.
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Tools needed in intrinsically nonlinear spaces?

- Comparison of objects in a nonlinear space?

"Topographic map example". Licensed under Public domain via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Tools needed in intrinsically nonlinear spaces?

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Tools needed in intrinsically nonlinear spaces?

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Tools needed in intrinsically nonlinear spaces?

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?
 - Gradients!

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Tools needed in intrinsically nonlinear spaces?

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?
 - Gradients!
- \(\Rightarrow \) **Riemannian geometry**

"Topographic map example". Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:Topographic_map_example.png
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Recall: Inner Products

- *Euclidean/Hilbertian Inner Product* on vector space E: bilinear, symmetric, positive definite mapping $\langle x, y \rangle \in \mathbb{R}$.

- Simplest example: usual dot-product on \mathbb{R}^n:

 $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t$,

 $x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^t Id y$.

- $x^t A y$, A symmetric, positive definite: inner product, $\langle x, y \rangle_A$.

- Without subscript $\langle -, - \rangle$ will denote standard Euclidean dot-product (i.e. $A = Id$).
Recall: Inner Products

- *Euclidean/Hilbertian Inner Product* on vector space E: bilinear, symmetric, positive definite mapping $\langle x, y \rangle \in \mathbb{R}$.

- Simplest example: usual dot-product on \mathbb{R}^n: $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t$,

 $$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^t Id y$$

 Id $n \times n$ identity matrix.
Recall: Inner Products

- **Euclidean/Hilbertian Inner Product** on vector space E: bilinear, symmetric, positive definite mapping $\langle x, y \rangle \in \mathbb{R}$.
- Simplest example: usual dot-product on \mathbb{R}^n: $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t$,

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^t ld_y$$

ld $n \times n$ identity matrix.
- $x^T A y$, A symmetric, positive definite: inner product, $\langle x, y \rangle_A$.
Recall: Inner Products

- **Euclidean/Hilbertian Inner Product** on vector space E: bilinear, symmetric, positive definite mapping $\langle x, y \rangle \in \mathbb{R}$.
- Simplest example: usual dot-product on \mathbb{R}^n: $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t$,

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^t Id y$$

Id $n \times n$ identity matrix.
- $x^T A y$, A symmetric, positive definite: inner product, $\langle x, y \rangle_A$.
- Without subscript $\langle -, - \rangle$ will denote standard Euclidean dot-product (i.e. $A = Id$).
Orthogonality, vector norm, distance from inner products.

\(\mathbf{x} \perp_A \mathbf{y} \iff \langle \mathbf{x}, \mathbf{y} \rangle_A = 0, \quad \| \mathbf{x} \|_A^2 = \langle \mathbf{x}, \mathbf{x} \rangle_A, \quad d_A(\mathbf{x}, \mathbf{y}) = \| \mathbf{x} - \mathbf{y} \|_A. \)
Orthogonality – Norm – Distance

- Orthogonality, vector norm, distance from inner products.

\[\mathbf{x} \perp_A \mathbf{y} \iff \langle \mathbf{x}, \mathbf{y} \rangle_A = 0, \quad \| \mathbf{x} \|^2_A = \langle \mathbf{x}, \mathbf{x} \rangle_A, \quad d_A(\mathbf{x}, \mathbf{y}) = \| \mathbf{x} - \mathbf{y} \|^A. \]

- There are norms and distances not from an inner product.
Inner Products and Duality

Linear form $h = (h_1, \ldots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(x) = \sum_{i=1}^{n} h_i x_i$.

- inner product $\langle - , - \rangle_A$ on \mathbb{R}^n: h represented by a unique vector h_A s.t

 $$h(x) = \langle h_A, x \rangle_A$$

h_A is the **dual** of h (w.r.t $\langle - , - \rangle_A$).
Inner Products and Duality

Linear form $h = (h_1, \ldots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(x) = \sum_{i=1}^{n} h_i x_i$.

- inner product $\langle - , - \rangle_A$ on \mathbb{R}^n: h represented by a unique vector h_A s.t

$$h(x) = \langle h_A, x \rangle_A$$

h_A is the dual of h (w.r.t $\langle - , - \rangle_A$).

- for standard dot product:

$$h = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = h^T$$
Inner Products and Duality

Linear form $h = (h_1, \ldots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(x) = \sum_{i=1}^n h_i x_i$.

- inner product $\langle - , - \rangle_A$ on \mathbb{R}^n: h represented by a unique vector h_A s.t

 $h(x) = \langle h_A, x \rangle_A$

 h_A is the dual of h (w.r.t $\langle - , - \rangle_A$).

- for standard dot product:

 $h = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = h^T$

- for general inner product $\langle - , - \rangle_A$

 $h_A = A^{-1} h = A^{-1} h^T$.
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Riemannian Metric

- **Riemannian metric** on an m–dimensional manifold = smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
Riemannian Metric

- **Riemannian metric** on an m–dimensional manifold $= \text{smooth family } g_P \text{ of inner products on the tangent spaces } T_PM \text{ of } M$
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
- Given a global parametrization
 $\varphi: (x) = (x_1, \ldots, x_n) \mapsto \varphi(x) \in M$, it corresponds to a smooth family of symmetric positive definite matrices:

\[
g_x = \begin{pmatrix}
g_{x11} & \cdots & g_{x1n} \\
\vdots & & \vdots \\
g_{xn1} & \cdots & g_{xnn}
\end{pmatrix}
\]
Riemannian Metric

- **Riemannian metric** on an m–dimensional manifold M is a smooth family g_P of inner products on the tangent spaces $T_P M$ of M
 - $u, v \in T_P M \mapsto g_p(u, v) := \langle u, v \rangle_p \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...

- Given a global parametrization
 $\varphi: \mathbf{x} = (x_1, \ldots, x_n) \mapsto \varphi(\mathbf{x}) \in M$, it corresponds to a smooth family of symmetric positive definite matrices:

$$
 g_x = \begin{pmatrix}
 g_{x11} & \cdots & g_{x1n} \\
 \vdots & \ddots & \vdots \\
 g_{xn1} & \cdots & g_{xnn}
 \end{pmatrix}
$$

- $u = \sum_{i=1}^n u_i \partial_{x_i}$, $v = \sum_{i=1}^n v_i \partial_{x_i}$
 $\langle u, v \rangle_x = (u_1, \ldots, u_n) g_x (v_1, \ldots, v_n)^t$
Riemannian Metric

- **Riemannian metric** on an m–dimensional manifold M is a smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_P(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
- Given a global parametrization $\varphi: (x) = (x_1, \ldots, x_n) \mapsto \varphi(x) \in M$, it corresponds to a smooth family of symmetric positive definite matrices:

 \[
 g_x = \begin{pmatrix}
 g_{x_{11}} & \cdots & g_{x_{1n}} \\
 \vdots & \ddots & \vdots \\
 g_{x_{n1}} & \cdots & g_{x_{nn}}
 \end{pmatrix}
 \]
- $u = \sum_{i=1}^{n} u_i \partial x_i$, $v = \sum_{i=1}^{n} v_i \partial x_i$
 - $\langle u, v \rangle_x = (u_1, \ldots, u_n) g_x (v_1, \ldots, v_n)^t$
- A smooth manifold with a Riemannian metric is a **Riemannian manifold**.
Riemannian Metric
Example: Induced Riemannian metric on submanifolds of \mathbb{R}^n

- Inner product from \mathbb{R}^n restricts to inner product on $M \subset \mathbb{R}^n$

- Frobenius metric on $\mathcal{P}(n)$
 - $\mathcal{P}(n)$ is a convex subset of $\mathbb{R}^{(n^2+n)/2}$
 - The Euclidean inner product defines a Riemannian metric on $\mathcal{P}(n)$
Example: Fisher information metric

- Smooth manifold $M = \varphi(U)$ represents a family of probability distributions (M is a \textit{statistical model}), $U \subset \mathbb{R}^m$
- Each point $P = \varphi(x) \in M$ is a probability distribution $P: \mathcal{Z} \to \mathbb{R}_{>0}$

The \textit{Fisher information metric} of M at $P_x = \varphi(x)$ in coordinates φ defined by:

$$ g_{ij}(x) = \int_{\mathcal{Z}} \frac{\partial \log P_x(z)}{\partial x_i} \frac{\partial \log P_x(z)}{\partial x_j} P_x(z)dz $$
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Invariance of the Fisher information metric

- Obtaining a Riemannian metric g on the left chart by pulling \tilde{g} back from the right chart:

$$g_{ij} = g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}\right) = \tilde{g}\left(d(\psi^{-1} \circ \varphi)(\frac{\partial}{\partial x_i}), d(\psi^{-1} \circ \varphi)(\frac{\partial}{\partial x_j})\right).$$

- Claim: $g_{ij} = \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j}$
Invariance of the Fisher information metric

Claim: \[g_{ij} = \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j} \]

Proof:

\[
g_{ij} = g \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = \tilde{g} \left(\sum_{k=1}^{m} \frac{\partial v_k}{\partial x_i}, \sum_{l=1}^{m} \frac{\partial v_l}{\partial x_j} \right)
\]

\[
= \sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j} \tilde{g} \left(\frac{\partial}{\partial v_k}, \frac{\partial}{\partial v_l} \right)
\]

\[
= \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j}
\]
Invariance of the Fisher information metric

- **Fact:** \(g_{ij} = \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j} \)

- Pulling the Fisher information metric \(\tilde{g} \) from right to left:

\[
\begin{align*}
g_{ij} &= \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j} \\
&= \sum_{k=1}^{m} \sum_{l=1}^{m} \int \frac{\partial \log P_v(z)}{\partial v_k} \frac{\partial \log P_v(z)}{\partial v_l} P_v(z)dz \cdot \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j} \\
&= \int \left(\sum_{k=1}^{m} \frac{\partial \log P_v(z)}{\partial v_k} \frac{\partial v_k}{\partial x_i} \right) \left(\sum_{l=1}^{m} \frac{\partial \log P_v(z)}{\partial v_l} \frac{\partial v_l}{\partial x_j} \right) P_v(z)dz \\
&= \int \frac{\partial \log P_x(z)}{\partial x_i} \frac{\partial \log P_x(z)}{\partial x_j} P_x(z)dz
\end{align*}
\]

- **Result:** Formula invariant of parametrization
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
Riemannian metrics and distances

Path length in metric spaces:

- Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$l(c) = \sup_{a = t_0 \leq t_1 \leq \ldots \leq t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$ \hspace{1cm} (3.1)

Intuitive path length on Riemannian manifolds:

- Riemannian metric g on M defines norm in $T_P M$
- Locally a good approximation for use with (3.1)
- This will be made precise in Francois’ lecture!
Riemannian metrics and distances

Path length in metric spaces:

- Let \((X, d)\) be a metric space. The length of a curve \(c: [a, b] \to X\) is

\[
l(c) = \sup_{a=t_0 \leq t_1 \leq \ldots \leq t_{n-1} \leq t_n=b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).
\] (3.1)

- Approach supremum through segments \(c(t_i, t_{i+1})\) of length \(\to 0\)
Riemannian metrics and distances

Path length in metric spaces:

- Let \((X, d)\) be a metric space. The length of a curve \(c: [a, b] \to X\) is

\[
I(c) = \sup_{a=t_0 \leq t_1 \leq \ldots \leq t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).
\]

(3.1)

- Approach supremum through segments \(c(t_i, t_{i+1})\) of length \(\to 0\)

Intuitive path length on Riemannian manifolds:

- Riemannian metric \(g\) on \(M\) defines norm in \(T_P M\)
Riemannian metrics and distances

Path length in metric spaces:

- Let \((X, d)\) be a metric space. The length of a curve \(c: [a, b] \to X\) is

\[
l(c) = \sup_{a = t_0 \leq t_1 \leq \ldots \leq t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})). \tag{3.1}
\]

- Approach supremum through segments \(c(t_i, t_{i+1})\) of length \(\to 0\)

Intuitive path length on Riemannian manifolds:

- Riemannian metric \(g\) on \(M\) defines norm in \(T_PM\)
- Locally a good approximation for use with (3.1)
Riemannian metrics and distances

Path length in metric spaces:

- Let \((X, d)\) be a metric space. The length of a curve \(c: [a, b] \to X\) is

\[
l(c) = \sup_{a=t_0 \leq t_1 \leq \ldots \leq t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).
\] (3.1)

- Approach supremum through segments \(c(t_i, t_{i+1})\) of length \(\to 0\)

Intuitive path length on Riemannian manifolds:

- Riemannian metric \(g\) on \(M\) defines norm in \(T_PM\)
- Locally a good approximation for use with (3.1)
- *This will be made precise in Francois’ lecture!*
Geodesics as length-minimizing curves

- We have a concept of path length $l(c)$ for paths $c: [a, b] \to M$
Geodesics as length-minimizing curves

- We have a concept of path length $l(c)$ for paths $c: [a, b] \to M$
- A geodesic from P to Q in M is a path $c: [a, b] \to X$ such that $c(a) = P, c(b) = Q$ and $l(c) = \inf_{c_P \to Q} l(c_{P \to Q})$.

The distance function $d(P, Q) = \inf_{c_P \to Q} l(c_{P \to Q})$ is a distance metric on the Riemannian manifold (M, g). Can you see why?

Do geodesics always exist?
Geodesics as length-minimizing curves

- We have a concept of path length $l(c)$ for paths $c: [a, b] \to M$
- A geodesic from P to Q in M is a path $c: [a, b] \to X$ such that $c(a) = P, c(b) = Q$ and $l(c) = \inf_{c_P \to Q} l(c_{P \to Q})$.
- The distance function $d(P, Q) = \inf_{c_P \to Q} l(c_{P \to Q})$ is a distance metric on the Riemannian manifold (M, g).

Geodesics as length-minimizing curves

- We have a concept of path length $l(c)$ for paths $c: [a, b] \to M$
- A geodesic from P to Q in M is a path $c: [a, b] \to X$ such that $c(a) = P, c(b) = Q$ and $l(c) = \inf_{c_P \to Q} l(c_P \to Q)$.
- The distance function $d(P, Q) = \inf_{c_P \to Q} l(c_P \to Q)$ is a distance metric on the Riemannian manifold (M, g). Can you see why?
Geodesics as length-minimizing curves

- We have a concept of path length $l(c)$ for paths $c: [a, b] \rightarrow M$
- A geodesic from P to Q in M is a path $c: [a, b] \rightarrow X$ such that $c(a) = P, c(b) = Q$ and $l(c) = \inf_{P \rightarrow Q} l(c_{P \rightarrow Q})$.
- The distance function $d(P, Q) = \inf_{P \rightarrow Q} l(c_{P \rightarrow Q})$ is a distance metric on the Riemannian manifold (M, g). Can you see why?
- Do geodesics always exist?
Example: Riemannian geodesics between 1-dimensional Gaussian distributions

- Space parametrized by $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+$
- Metric 1: Euclidean inner product \Rightarrow Euclidean geodesics

- Metric 2: Fisher information metric

- View in plane:

Middle figure from Costa et al, Fisher information distance: a geometrical reading
Outline

1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n

2 Differential Geometry
 Smooth manifolds
 Building Manifolds
 Tangent Space
 Vector fields
 Differential of smooth map

3 Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature
A first take on curvature

- Curvature in metric spaces defined by comparison with *model spaces* of known curvature.
A first take on curvature

- Curvature in metric spaces defined by comparison with *model spaces* of known curvature.
 - Positive curvature model spaces. Spheres of curvature $\kappa > 0$:
 - Flat model space: Euclidean plane
 - Negatively curved model spaces: Hyperbolic space of curvature $\kappa > 0$
A first take on curvature

Figure: **Left:** Geodesic triangle in a negatively curved space. **Right:** Comparison triangle in the plane.

- A $\text{CAT}(\kappa)$ space is a metric space in which geodesic triangles are ”thinner” than for their comparison triangles in the model space M_κ; that is, $d(x, a) \leq d(\bar{x}, \bar{a})$.
- A locally $\text{CAT}(\kappa)$ space has curvature bounded from above by κ.
- Geodesic triangles are useful for intuition and proofs!
Example: The two metrics on 1-dimensional Gaussian distributions

- Metric 1: Euclidean inner product: **FLAT**

- Metric 2: Fisher information metric: **HYPERBOLIC**

(OBS: Not hyperbolic for any family of distributions)

- View in plane:
Example: The two metrics on 1-dimensional Gaussian distributions

- Metric 1: Euclidean inner product: **FLAT**

- Metric 2: Fisher information metric: **HYPERBOLIC**

(OBS: Not hyperbolic for any family of distributions)

- View in plane:
Example: The two metrics on 1-dimensional Gaussian distributions

- Metric 1: Euclidean inner product: **FLAT**

- Metric 2: Fisher information metric: **HYPERBOLIC**

\[(\text{OBS: Not hyperbolic for any family of distributions})\]

- View in plane:

\[\begin{align*}
\sigma & \\
\mu &
\end{align*}\]

- You will see these again with Stefan!
Relation to sectional curvature

- $\text{CAT}(\kappa)$ is a weak notion of curvature
- Stronger notion of sectional curvature (requires a little more Riemannian geometry)

Theorem

A smooth Riemannian manifold M is (locally) $\text{CAT}(\kappa)$ if and only if the sectional curvature of M is $\leq \kappa$.

□
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- Given a distance matrix $D_{ij} = d(x_i, x_j)$ for a dataset $X = \{x_1, \ldots, x_n\}$ residing on a manifold M, where d is a geodesic metric.
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- Given a distance matrix $D_{ij} = d(x_i, x_j)$ for a dataset $X = \{x_1, \ldots, x_n\}$ residing on a manifold M, where d is a geodesic metric.

- Assume that $Z = \{z_1, \ldots, z_n\} \subset \mathbb{R}^d$ is an embedding of X obtained through MDS or manifold learning.
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- Given a distance matrix $D_{ij} = d(x_i, x_j)$ for a dataset $X = \{x_1, \ldots, x_n\}$ residing on a manifold M, where d is a geodesic metric.
- Assume that $Z = \{z_1, \ldots, z_n\} \subset \mathbb{R}^d$ is an embedding of X obtained through MDS or manifold learning.
- **Common belief**: If d large, then Z is a good (perfect?) representation of X.
Example of insight with \(\text{CAT}(\kappa)\):
MDS and manifold learning lie to you

\[\text{Truth: If there exists a map } f: M \rightarrow \mathbb{R}^d \text{ such that } \|f(a) - f(b)\| = d(a, b) \text{ for all } a, b \in M, \text{ then}\]
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that $\|f(a) - f(b)\| = d(a, b)$ for all $a, b \in M$, then

 - f maps geodesics to straight lines
 - M is $\text{CAT}(0)$
 - M is not $\text{CAT}(\kappa)$ for any $\kappa < 0$
Example of insight with $CAT(\kappa)$: MDS and manifold learning lie to you

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that $\|f(a) - f(b)\| = d(a, b)$ for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - M is $CAT(0)$
 - M is not $CAT(\kappa)$ for any $\kappa < 0$
 - \Rightarrow M is flat
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- **Truth:** If there exists a map $f: M \rightarrow \mathbb{R}^d$ such that $\|f(a) - f(b)\| = d(a, b)$ for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - M is $\text{CAT}(0)$
 - M is not $\text{CAT}(\kappa)$ for any $\kappa < 0$
 - $\Rightarrow M$ is flat

- That is, if M is not flat, MDS and manifold learning lie to you
Example of insight with $\text{CAT}(\kappa)$: MDS and manifold learning lie to you

- **Truth**: If there exists a map $f : M \to \mathbb{R}^d$ such that $\|f(a) - f(b)\| = d(a, b)$ for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - M is $\text{CAT}(0)$
 - M is not $\text{CAT}(\kappa)$ for any $\kappa < 0$
 - $\Rightarrow M$ is flat

- That is, if M is not flat, MDS and manifold learning lie to you
- (but sometimes lies are useful)
A message from Stefan for tomorrow’s practical

Check out course webpage for installation instructions!
http://image.diku.dk/MLLab/IG4.php